We have the following function:
![H(t)=10\sin (2\pi(t-(1)/(4)))+15](https://img.qammunity.org/2023/formulas/mathematics/college/v63oq3a378jrxgn1ia9asoycn5eotcd8vz.png)
a) The initial height occurs at t=0. By substituting this value into the function, we get
![H(0)=10\sin (2\pi(0-(1)/(4)))+15](https://img.qammunity.org/2023/formulas/mathematics/college/25ung0bix8k5y60febxyn9zhvc6xptkcj6.png)
which gives
![\begin{gathered} H(0)=10\sin (-2\pi(1)/(4))+15 \\ H(0)=10\sin (-(2\pi)/(4))+15 \\ H(0)=10\sin (-(\pi)/(2))+15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rx8bjmahas2h0wzhw75m7v7rof17rkx5yi.png)
since sin(-Pi/2) is equal to -1, we have
![H(0)=-10+15](https://img.qammunity.org/2023/formulas/mathematics/college/ksii6m6808i64eqyhcw493t8ff8oehjk87.png)
Then, H(0)= 5, so the height is 5 feets.
b) The car will make a full rotation when the argument is shifted 2Pi:
![H(t)=10\sin (2\pi(t-(1)/(4))+2\pi)+15](https://img.qammunity.org/2023/formulas/mathematics/college/fcdad33wyclv8hb1a8bz7t86ki1uer0twm.png)
at this point H(t) must be equal to 5 feets. Then, we have
![5=10\sin (2\pi(t-(1)/(4))-2\pi)+15](https://img.qammunity.org/2023/formulas/mathematics/college/5tg31nki8trex7zl3wkpmaipnw49ixy3z7.png)
and we must find t. If we move +15 to the left hand side, we obtain
![\begin{gathered} 5-15=10\sin (2\pi(t-(1)/(4))-2\pi) \\ \text{then} \\ 10\sin (2\pi(t-(1)/(4))-2\pi)=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/31os6cg0kw3azudv3e47ml1kwpbm7mqy6l.png)
By moving the coefficient 10 the the right hand side, we get
![\begin{gathered} \sin (2\pi(t-(1)/(4))-2\pi)=-(10)/(10) \\ \sin (2\pi(t-(1)/(4))-2\pi)=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q6kcpfho8ntuijue4kgbluremzjmkdonzv.png)
we can note that when
![\sin \theta=-1\Rightarrow\theta=-90=-(\pi)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/ls5n5z9ifq39d08kirswc1xvfizc1y9kzp.png)
this implies that the argument of our last result is
![2\pi(t-(1)/(4))-2\pi=-(\pi)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/reoipx9wyw0hzp0lr22tb5q6uekbf7dvib.png)
By moving 2Pi to the right hand side, we have
![\begin{gathered} 2\pi(t-(1)/(4))=-(\pi)/(2)+2\pi \\ 2\pi(t-(1)/(4))=(3\pi)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6jtx32f5cp8w40jpxkfduk9n5ki3euy6bu.png)
Now, by moving 2Pi to the right hand side, we have
![t-(1)/(4)=-((3\pi)/(2))/(2\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/6e0426pgmgexygsij0h4pyiilypznsfo55.png)
which gives
![t-(1)/(4)=(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/l0qujc41hkp13gg0xb2pt2u1scy0luiq01.png)
so, t is given by
![\begin{gathered} t=(3)/(4)+(1)/(4) \\ t=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nqc1komx901pkpv3e2e1gp7tztnnrux3gz.png)
That is, n 1 minute, the car will take one full rotation.
c) The maximum height of the car ocurrs at t=0.5 min because in one minute it take one full rotation. Then, at t=1/2 we get
![H((1)/(2))=10\sin (2\pi((1)/(2)-(1)/(4)))+15](https://img.qammunity.org/2023/formulas/mathematics/college/p23y1fw8g3vuhh9npar1azqp3ywvqgycj4.png)
which gives
![\begin{gathered} H((1)/(2))=10\sin (2\pi((1)/(4)))+15 \\ H((1)/(2))=10\sin ((\pi)/(2))+15 \\ H((1)/(2))=10(1)+15 \\ H((1)/(2))=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nnueuy2wwvbxcwht68ja2f13i6afdavvl2.png)
that is, the maximum height is 25 feets