48.4k views
1 vote
Help 4567778776655555

Help 4567778776655555-example-1
User TheZuck
by
5.4k points

1 Answer

3 votes

In order to calculate the function (f/g)(x), we need to divide f(x) by g(x).

First, let's find the zeros of the function f(x), so we can write it in the factored form:


\begin{gathered} f(x)=-10x^2+30x+40\\ \\ a=-10,b=30,c=40\\ \\ x=(-b\pm√(b^2-4ac))/(2a)\\ \\ x=(-30\pm√(900+1600))/(-20)\\ \\ x_1=(-30+50)/(-20)=-1\\ \\ x_2=(-30-50)/(-20)=4 \end{gathered}

So the factored form is:


\begin{gathered} f(x)=a(x-x_1)(x-x_2)\\ \\ f(x)=-10(x+1)(x-4) \end{gathered}

Now, calculating the composite function, we have:


(f(x))/(g(x))=(-10(x+1)(x-4))/(-5x-5)=(-10(x+1)(x-4))/(-5(x+1))=2(x-4)=2x-8

User Zack Burt
by
6.0k points