Answer
Tan (A) = 0.109 radians
Step-by-step explanation:
The figure given is a right angles triangle
Given that AB = c is the hypotenus
AC = b = adjacent
BC = a = opposite
Tan A can be calculated using SOH CAH TOA
Tan A = opposite / adjacent
Tan A = BC / AC
BC = a = 4.020
We need to find b uisng pythagoras theorem
![\begin{gathered} c^2=a^2+b^2 \\ 12^2=4.020^2+b^2 \\ 144=16.1604+b^2 \\ \text{Collect the like terms} \\ b^2\text{ = 144 - 16.1604} \\ b^2\text{ = 127.8396} \\ b\text{ = }\sqrt[]{127.8396} \\ b\text{ = 11.307} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49jniwyhhyrei5us4qwvm29azd71fzb6nr.png)
b = 11.307
Tan A = 4.020 / 11.307
Tan A = 0.3555
A = tan ^-1 (0.3555)
A = 19.570 degrees
Convert degrees to radian
since 1 pi = 180 degrees
x pi = 19.570
Cross multiply
19.570 * 1 = x * 180
x = 19.570 / 180
x = 0.109
Therefore, tan (A) is 0.109 radians