Solution:
Given the a figure;
The figure is a square with the unshaded region is a semi circle.
The measure of the side lengths of the square is 25 ft
To find the area, A, of the shaded region, the formula is
![\begin{gathered} A=Area\text{ of Square}-Area\text{ of a semi circle} \\ A=(l^2)-((\pi r^2)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iwljhghd7hj4nxduh87oew58hs4x5n15wr.png)
Where
![\begin{gathered} l=25\text{ ft} \\ d\text{ is the diameter of the semi circle} \\ d=l=25\text{ ft} \\ r\text{ is the radius of the semi circle} \\ r=(d)/(2)=(25)/(2)=12.5\text{ ft} \\ r=12.5\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wb2hv0stx14gqyp2yu2j05ms0sbvhk7kfk.png)
Substitute the values of the variables into the formula above
![\begin{gathered} A=25^2-((\pi\cdot12.5^2)/(2)) \\ A=625-245.4369 \\ A=379.5631\text{ ft}^2 \\ A=379.56\text{ ft}^2\text{ \lparen nearest hundredth\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kklimkdlenkme3dezg341pb673e7skol3k.png)
Hence, the answer is 379.56 ft² (nearest hundredth)