101k views
3 votes
Let -3 -5 be a point on the terminal

Let -3 -5 be a point on the terminal-example-1

1 Answer

7 votes

We have a terminal point (-3,-5).

We have to find cos(θ), csc (θ and tan)(θ.)

We can locate the terminal point and the angle as:

The cosine of this angle will be negative, as ( is located in the third quadrant)

The hypotenuse of this right triangle will be called R and we can calculate it using the Pythagorean theorem:


\begin{gathered} R^2=x^2+y^2 \\ R=\sqrt[]{x^2+y^2} \end{gathered}

We can estimate the cosine as:


\begin{gathered} \cos (\theta)=(x)/(R) \\ \cos (\theta)=\frac{-3}{\sqrt[]{(-3)^2+(-5)^2}} \\ \cos (\theta)=\frac{-3}{\sqrt[]{9+25}} \\ \cos (\theta)=\frac{-3}{\sqrt[]{34}} \\ \cos (\theta)=\frac{-3\sqrt[]{34}}{34} \end{gathered}

We can now relate this to the csc(θ) as:


\begin{gathered} \csc (\theta)=(1)/(\sin (\theta)) \\ \csc (\theta)=(1)/((y)/(R)) \\ \csc (\theta)=(R)/(y) \\ \csc (\theta)=\frac{\sqrt[]{34}}{-5} \\ \csc (\theta)=-\frac{\sqrt[]{34}}{5} \end{gathered}

Finally, we can calculate the tangent as:


\begin{gathered} \tan (\theta)=(y)/(x) \\ \tan (\theta)=(-5)/(-3) \\ \tan (\theta)=(5)/(3) \end{gathered}

Answer:

cos(θ) = -3√34/34

csc(θ) = -√34/5

tan(θ) = 5/3

Let -3 -5 be a point on the terminal-example-1
User Mimoid
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories