Main Answer:
Step-by-step explanation:
Given that,
= -4
The surface area of the snow ball = 4π
![r^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7llb7qkbn5xzomhq0yri10x1phwgy9lxdn.png)
Let the surface area = A
If A denotes the surface area and D the diameter then,
A = 4π
= 4π
![((D)/(2) )^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/k213tc8iay5fb3wmsw223se6waugtfwzwb.png)
⇒ A = π
![D^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kd6nlzgzh6apatgbtqjvswwa8o7vvuynqz.png)
Differentiate with respect to r,
= 2πD
By using chain rule,
=
![((dA)/(dt))](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ju7pisvgln09j878iu8roh8wrq6twabww.png)
=
![((dA)/(dt))/((dD)/(dt))](https://img.qammunity.org/2023/formulas/mathematics/high-school/e7i3w59nyh4k2gcbbsuz21t0q01zgp7rwg.png)
⇒ 2πD =
![-(4)/((dD)/(dt))](https://img.qammunity.org/2023/formulas/mathematics/high-school/aas5kn86qytpmutf8f96vh329f5cu2q7qt.png)
∴
=
![-(4)/(2\pi\\D)](https://img.qammunity.org/2023/formulas/mathematics/high-school/b3xld9elcrod37b1q003kv68jo2z930vck.png)
when D = 9,
=
![-(4)/(18\pi)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ypd5gvn7fnoyc6fxveo6bvvh2ztd0vlz06.png)
∴
=
![-(2)/(9\pi)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mrikzggn9lt472vzgy3og2iufdmwkhnz1n.png)
so, the diameter is decreasing at a rate of
.