Answer:
![g(x)=(x^2+1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bh8pbttm7rplcig7tbp3qse36zylu65s57.png)
Explanation:
Given functions:
![\begin{cases}f(x)=3x-1\\(f \circ g)(x)=x^2\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k72wz55dqmtdcm6fqzc1noexsfo4qph10d.png)
Composite functions are when the output of one function is used as the input of another.
Therefore, the given composite function (f o g)(x) means to substitute function g(x) in place of the x in function f(x).
![\begin{aligned}(f \circ g)(x) & = x^2\\f(g(x)) & = x^2\\\implies 3(g(x))-1 & = x^2\\3(g(x))-1+1 & = x^2+1\\3(g(x))&=x^2+1\\(3(g(x)))/(3)&=(x^2+1)/(3)\\\implies g(x)&=(x^2+1)/(3)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ik7p9djzeel2ypdvlt7rbcy0nm1zwbba8v.png)
Therefore:
![\boxed{g(x)=(x^2+1)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ut5lkvkrm0sudix15wd7dtweqeinr2vscq.png)