Answer:
A straight line is represented by a linear equation.
The possible equations are:
\mathbf{3y = 2x + 4}3y=2x+4 .
\mathbf{y = \frac 23x + \frac{4}{3}}y=
3
2
x+
3
4
.
\mathbf{y = \frac 23(x - 1) + 2}y=
3
2
(x−1)+2 .
\mathbf{y = \frac 23(x - 4) + 4}y=
3
2
(x−4)+4
The points are given as:
\mathbf{(x,y) = \{(1,2),(4,4)\}}(x,y)={(1,2),(4,4)}
Start by calculating the slope (m)
\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}m=
x
2
−x
1
y
2
−y
1
So, we have:
\mathbf{m = \frac{4-2}{4-1}}m=
4−1
4−2
\mathbf{m = \frac{2}{3}}m=
3
2
The equation in slope intercept form is then calculated as:
\mathbf{y = m(x - x_1) + y_1}y=m(x−x
1
)+y
1
So, we have:
\mathbf{y = \frac 23(x - 1) + 2}y=
3
2
(x−1)+2
or
\mathbf{y = \frac 23(x - 4) + 4}y=
3
2
(x−4)+4
Expand \mathbf{y = \frac 23(x - 1) + 2}y=
3
2
(x−1)+2
\mathbf{y = \frac 23x - \frac 23 + 2}y=
3
2
x−
3
2
+2
Take LCM
\mathbf{y = \frac 23x + \frac{-2 + 6}{3}}y=
3
2
x+
3
−2+6
\mathbf{y = \frac 23x + \frac{4}{3}}y=
3
2
x+
3
4
Multiply through by 3
\mathbf{3y = 2x + 4}3y=2x+4
So, the possible equations are:
\mathbf{3y = 2x + 4}3y=2x+4 .
\mathbf{y = \frac 23x + \frac{4}{3}}y=
3
2
x+
3
4
.
\mathbf{y = \frac 23(x - 1) + 2}y=
3
2
(x−1)+2 .
\mathbf{y = \frac 23(x - 4) + 4}y=
3
2
(x−4)+4