25.3k views
2 votes

\rm\int_0^1 \frac{( {x}^ \varphi - 1 {)}^(2) }{ log {}^(2) (x) } dx\\

1 Answer

2 votes

I assume the natural logarithm, and not the base-10 log. Parameterize the integral as


\displaystyle I(a) = \int_0^1 ((x^a - 1)^2)/(\log^2(x)) \, dx

Differentiate twice with respect to
a.


\displaystyle I'(a) = 2 \int_0^1 (x^(2a) -x^a)/(\log(x)) \, dx


\displaystyle I''(a) = 2 \int_0^1 (x^(2a) - x^a) \, dx

Evaluate the last integral, then solve for
I(a) with the fundamental theorem of calculus, noting that
I(0)=I'(0)=0.


\displaystyle I''(a) = 2\left(\frac1{2a+1} - \frac1{a+1}\right)


\displaystyle I'(a) = 2 \int_0^a \left(\frac1{2t+1} - \frac1{t+1}\right) \, dt \\\\ ~~~~ = \log(2a+1) - 2 \log(a+1)


\displaystyle I(a) = \int_0^a (\log(2t+1) - 2\log(t+1)) \, dt \\\\ ~~~~ = (2a+1) \log(2a+1) - 2(a+1) \log(a + 1)

Let
a=\phi to recover the original integral.


\displaystyle I(a) = (2\phi+1) \log(2\phi+1) - 2(\phi+1) \log(\phi + 1)

Using various properties of the golden ratio
\phi, namely


\phi = 1 + \frac1\phi \implies \phi^2 = \phi + 1 \implies \phi^3 = \phi^2 + \phi


2\phi+1 = \phi\left(2+\frac1\phi\right) = \phi(1 + \phi)


\phi=\frac{1+\sqrt5}2 \implies \phi^3 = 2 + \sqrt5

we can simplify the result to


\displaystyle I(\phi) = \int_0^1 ((x^\phi-1)^2)/(\log^2(x)) \, dx = \boxed{\sqrt5\,\log(\phi)}

User Sidarcy
by
4.5k points