230k views
3 votes
Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

User Shourav
by
7.8k points

2 Answers

3 votes


\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)=0


\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)-\left(b-c\right)\left(b+c\right)=0-\left(b-c\right)\left(b+c\right)


\left(a-b\right)\left(a+b\right)+\left(c-a\right)\left(c+a\right)=-\left(b-c\right)\left(b+c\right)


\left(a-b\right)\left(a+b\right)+\left(c-a\right)\left(c+a\right) = a^2-b^2+\left(c-a\right)\left(c+a\right) =a^2-b^2+c^2-a^2 =-b^2+c^2


-\left(b-c\right)\left(b+c\right) =-\left(b^2-c^2\right) =-b^2-\left(-c^2\right) =-b^2+c^2


-b^2+c^2=-b^2+c^2


0=0

It is always true because 0=0.

User Datajam
by
7.6k points
4 votes

Answer:

  • this equation is always true

Explanation:

Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

(a−b)⋅(a+b)+(b−c)⋅(b+c)+(−a+c)⋅(a+c)=0

(a^2−b^2)+(b^2−c^2)+(−a^2+c^2)=0

(a^2−c^2)+(−a^2+c^2)=0

0=0

this equation is always true

User Martin Miles
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.