Answer:
![x=(1)/(5), \quad y=6](https://img.qammunity.org/2023/formulas/mathematics/college/68yeq13ghj7mvc29vg25ncieqapc5ejiop.png)
Explanation:
Given equations:
![\begin{cases}y=10x+4\\2y+5x=13\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/o8sfg83kn719amw31gua7u2th966bfi67t.png)
To solve the given equations by substitution, substitute the first equation into the second equation and solve for x:
![\begin{aligned}\textsf{Equation 2}: \quad 2y+5x&=13\\\\y=10x+4 \implies 2(10x+4)+5x&=13\\20x+8+5x&=13\\25x+8&=13\\25x+8-8&=13-8\\25x&=5\\(25x)/(25)&=(5)/(25)\\x&=(1)/(5)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/vjyxj0s7wq4jjng8xu3qkef7xbt42qlfpa.png)
Substitute the found value of x into the first equation and solve for y:
![\begin{aligned}\textsf{Equation 1}: \quad y &=10x+4\\\\x=(1)/(5) \implies y&=10\left((1)/(5)\right)+4\\y&=(10)/(5)+4\\y&=2+4\\y&=6\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/62ufrsycnrliu0dwf5gqsvf1so1fa941oo.png)
Therefore, the solution to the equations is:
![x=(1)/(5), \quad y=6](https://img.qammunity.org/2023/formulas/mathematics/college/68yeq13ghj7mvc29vg25ncieqapc5ejiop.png)