Answer:
(a) 1 hour 45 min
(b) 57.1 km/h (nearest tenth)
Explanation:
Given information:
- Distance = 100 km
- Time = 1 h 38 min 45 sec
![\large\boxed{\sf Speed=(Distance)/(Time)}](https://img.qammunity.org/2023/formulas/mathematics/college/66zfb0s3981daex8t997mas3dgjzbhwluz.png)
Part (a)
![\begin{aligned}\sf (1)/(4)\;hour &= \sf 1 \; hour / 4 \\& = \sf 60 \;mins / 4\\& = \sf 15 \; mins\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/y2xvzcgfmt72ugp5p2ddf6mt42ob8hp48w.png)
Therefore, the nearest ¹/₄ hours either side of the given time is:
- 1 hour 30 min
- 1 hour 45 min
1 h 38 min 45 sec is 8 min 45 sec more than 1 hour 30 min.
1 h 38 min 45 sec is 6 min 15 sec less than 1 hour 45 min.
Therefore, the nearest ¹/₄ hour to the given time is:
Part (b)
1 hour 45 min = 1.75 min (in decimal form)
Substitute the given distance and the rounded time (in decimal form) into the formula and solve for speed:
![\begin{aligned} \implies \sf Speed & =\sf (Distance)/(Time)\\\\& = \sf (100)/(1.75)\\\\& = \sf 57.1\;km/h\;(nearest\;tenth)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7rv4j1ywsgfafvdowgfklw62vmn2l3t4ha.png)