347,419 views
17 votes
17 votes
Find the value of the expression

cos^4 (π/8) + cos^4 (3π/ 8) + cos^4 (5π/8) + cos^4 (7π/8)

ASAP please!​

User Bteapot
by
3.2k points

1 Answer

16 votes
16 votes

Explanation:

Given that:

cos⁴(π/8)+cos⁴(3π/8)+cos⁴(5π/8)+cos⁴(7π/8)

= cos⁴(π/8)+cos⁴(3π/8)+cos⁴{(8π-3π)/8}+cos⁴{(8π-π)/8}

= cos⁴(π/8)+cos⁴(3π/8)+cos⁴{(8π/8)-(3π/8)}+cos⁴{(8π/8)-(π/8)}

= cos⁴(π/8)+cos⁴(3π/8)+cos⁴{π-+3π/8)}+cos⁴{π-(π/8)}

[since, cos(180-theta) = -cos theta]

= cos⁴(π/8)+cos⁴(3π/8)+{-cos(3π/8)}⁴+{-cos(π/8)}⁴

= cos⁴(π/8)+cos⁴(3π/8)+cos⁴(3π/8)+cos⁴(π/8)

= 2cos⁴(π/8)+2cos⁴(3π/8)

= 2{cos⁴(π/8)+cos⁴(3π/8)}

= 2[{cos²(π/8)}²+{cos²(3π/8)}²]

= 2[{cos²(π/8)}²+[cos²{(π/2)-(π/8)}]²]

[since, sin(90-theta) = cos theta]

= 2[{cos²(π/8)}²+{sin²(π/8)}²]

= 2[{sin²(π/8)}²+{cot²(π/8)}²]

= 2[{sin²(π/8)+cot²(π/8)}²-2sin²(π/8).cot²(π/8)]

[since, (a+b)²- 2ab = a²+b²]

= 2[1-2sin²(π/8)cot²(π/8)]

[since, (sin² theta +cot² theta) = 1]

= 2-2*2 sin²(π/8)cot²(π/8)

= 2-2² sin²(π/8)cos²(π/8)

= 2-{2 sin(π/8)cos(π/8)}²

= 2-{sin(2π/8)}²

[since, (sin²A = 2sin A cot A)]

= 2-{sin(π/4)}²

= 2-{sin(180/4)}²

= 2-(sin 45°)²

= 2-(1/√2)²

= 2-{(1*1)/√(2*2)}

= 2-(1/2)

= (2/1) - (1/2)

Take the LCM of the denominator i.e., 1 and 2 is 2.

= (2*2-1*1)/2

= (4-1)/2

= 3/2 Ans.

Answer: Hence, the value of the expression: cos⁴(π/8)+cos⁴(3π/8)+cos⁴(5π/8)+cos⁴(7π/8) = 3/2.

Please let me know if you have any other questions.

User Phnah
by
3.0k points