Answer:
Explanation:
First we have to consider the initial and final velocities to calculate the average acceleration:
v_i= - \Big[ 1.10\frac{m}{s}\Big]\widehat{i} \\ v_f= \Big[ 11.5\frac{m}{s}\Big]\widehat{j} \\ \implies \Delta v=v_f-v_i \\ \implies \Delta v= [ 1.10\frac{m}{s}]\widehat{i} +[ 11.5\frac{m}{s}]\widehat{j} \text{ in an average time } \Delta t=1.40\,s.v
i
=−[1.10
s
m
]
i
v
f
=[11.5
s
m
]
j
⟹Δv=v
f
−v
i
⟹Δv=[1.10
s
m
]
i
+[11.5
s
m
]
j
in an average time Δt=1.40s.
With the information we can calculate the average acceleration in terms of the x- and y-components:
a=\Delta v/\Delta t= \dfrac{[ 1.10\frac{m}{s}]\widehat{i} +[ 11.5\frac{m}{s}]\widehat{j}}{1.40\,s} \\ \text{ } \\ \implies a= \big[ 0.786\frac{m}{s^2}\big]\widehat{i} + \big[ 8.214\frac{m}{s^2} \big]\widehat{j}a=Δv/Δt=
1.40s
[1.10
s
m
]
i
+[11.5
s
m
]
j
⟹a=[0.786
s
2
m
]
i
+[8.214
s
2
m
]
j