42.9k views
3 votes
Give the equation of the circle centered at the origin and passing through the point (4, 0).

User Heaphach
by
3.0k points

1 Answer

5 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \: x² + y² = 16

____________________________________


\large \tt Solution \: :

The distance between the centre and the point through which the circle is passing is equal to the radius of the circle.

so, let's use distance formula here :


\qquad \tt \rightarrow \: \sqrt{(y2 - y1) {}^(2) + (x2 - x1) {}^(2) }


\qquad \tt \rightarrow \: \sqrt{(0 - 0) {}^(2) + (4 - 0) {}^(2) }


\qquad \tt \rightarrow \: \sqrt{0 + (4) {}^(2) }


\qquad \tt \rightarrow \: \sqrt{ {4}^(2) }


\qquad \tt \rightarrow \: 4 \: \: units

Now, let's write the equation of circle in standard form :


\qquad \tt \rightarrow \: (x - h) {}^(2) + (y - k) {}^(2) = r {}^(2)

  • h = x - coordinate of circle
  • k = y - coordinate of circle
  • r = radius of circle


\qquad \tt \rightarrow \: (x - 0) {}^(2) + (y - 0) {}^(2) = {4}^(2)


\qquad \tt \rightarrow \: {x}^(2) + {y}^(2) = 16

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Neet
by
3.2k points