![\quad \huge \quad \quad \boxed{ \tt \:Answer }](https://img.qammunity.org/2023/formulas/mathematics/college/nw7w2s2669vizr2rgidn9a2bju58noyesk.png)
![\qquad \tt \rightarrow \:4\pm c](https://img.qammunity.org/2023/formulas/mathematics/high-school/yvqnbwildhaigv6isu528cy7e112nyvfrh.png)
____________________________________
![\large \tt Solution \: :](https://img.qammunity.org/2023/formulas/mathematics/college/zwgnomcyck8880zsiue912lekjvl3qy9ii.png)
The given expression is :
![\qquad \tt \rightarrow \: 5 - |c + 1|](https://img.qammunity.org/2023/formulas/mathematics/high-school/c12xpfjqxklnzoruniw9yswy35llxzxie2.png)
![\qquad \tt \rightarrow \: 5 - 1 - |c|](https://img.qammunity.org/2023/formulas/mathematics/high-school/inp5doizeat3v1o711a7ekz7p5aofitly0.png)
[ as 1 is a positive number, it can come out of modulus function as it is ]
![\qquad \tt \rightarrow \:4- |c|](https://img.qammunity.org/2023/formulas/mathematics/high-school/t9ncyskswiytjxymnvn4wtvkd34u6vd092.png)
Now, there are two cases possible.
Case 1 :
![\qquad \tt \rightarrow \: 4- c](https://img.qammunity.org/2023/formulas/mathematics/high-school/iok97ruob6sv5klvkcyua0xcr7hd5pbr5y.png)
[ if c is a positive number, it will come out of modulus as it is ]
Case 2 :
![\qquad \tt \rightarrow \: 4 - (-c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pa2u2suufe01u84l7xzrg9xz9uvdnqrvnq.png)
![\qquad \tt \rightarrow \: 4 + c](https://img.qammunity.org/2023/formulas/mathematics/high-school/wxkj2nx6hscwbgjfsp3yjpcdln18qgm5az.png)
[ if b is a negative number, it will come out of modulus with a negative sign, to make the overall term out of modulus positive ]
Answered by : ❝ AǫᴜᴀWɪᴢ ❞