Answer:
346 m/s
4.34 s (2 d.p.)
4960 m
23.33 °C (2 d.p.)
Step-by-step explanation:
Speed of sound in air
![\boxed{v=331+0.6T}](https://img.qammunity.org/2023/formulas/physics/college/bmdkqi7d0tl633qgsv456uwi7vt1rivmze.png)
Where:
- v = velocity in m/s
- T = temperature in °C
Substitute the given temperature of 25°C into the formula and solve for v:
![\implies v=\sf331+0.6(25)=346\; m/s](https://img.qammunity.org/2023/formulas/physics/college/tqyfx291qrnf8lc67abxpnvrphgzll5b5r.png)
As 1 km = 1000 m then:
⇒ 1.5 km = 1500 m
![\boxed{\sf Time=(Distance)/(Speed)}](https://img.qammunity.org/2023/formulas/mathematics/college/1rkcmowm19s1twk9gzjkvkdso5819ifd0l.png)
Substitute the distance of 1500 m and the speed of 346 m/s into the formula and solve for time:
![\implies \sf Time=(1500)/(346)=4.34\;s\;(2\:d.p.)](https://img.qammunity.org/2023/formulas/physics/college/dr7gt5x7e7obd8dnvbhis524gron6bl5t6.png)
![\boxed{\sf Distance=Speed * Time}](https://img.qammunity.org/2023/formulas/mathematics/high-school/acoonu70bwapwqojjof6meq1e3adnjaqbj.png)
10 seconds more would be:
![\implies \sf (1500)/(346)+10=14.33526012...](https://img.qammunity.org/2023/formulas/physics/college/cr3nv0uuns1378l3yrs8yuwz14kcxskh68.png)
Substitute the speed of 346 m/s and the time into the formula and solve for distance:
![\begin{aligned}\implies \sf Distance &= \sf Speed * Time\\&= \sf 346 * 14.33526012...\\&=\sf 4960\;m \end{aligned}](https://img.qammunity.org/2023/formulas/physics/college/s9t1dr1m6anav0ro1tapgsjx8g08qq9w3n.png)
To calculate what temperature the sound can travel at 345 m/s, substitute this speed into the Speed of sound in air formula and solve for T:
![\begin{aligned} v&=331+0.6T\\\implies 345 & = 331+0.6T\\345 -331& = 331+0.6T-331\\14&=0.6T\\T&=(14)/(0.6)\\\implies T&=23.33^(\circ)\sf C\end{aligned}](https://img.qammunity.org/2023/formulas/physics/college/x089iim45kdfc5i9ouuti3q2sj8qvp4jew.png)