223k views
0 votes
Find the perimeter P of

JKLM
with vertices J(-4,2), K(1,2), L(2.-2), and M(-3,-2). Round your answer to the nearest tenth, if necessary.
P = units

2 Answers

2 votes
I have given the procedure how to solve this question you have to draw the Cartesian plane and then connect the dots and measure them and then add all the units.

Refer the attachment .
Find the perimeter P of JKLM with vertices J(-4,2), K(1,2), L(2.-2), and M(-3,-2). Round-example-1
User Ed Landau
by
2.6k points
4 votes

Answer: P≈18.2 units

Explanation:


J(-4,2)\ \ \ \ K(1,2)\ \ \ \ L(2,-2)\ \ \ \ M(-3,-2)\\\\\overline{JK}=√((1-(-4))^2+(2-2)^2)\\ \overline{JK}=√((1+4)^2+0^2)\\ \overline{JK}=√(5^2+0)\\\overline{JK}=√(5^2)\\\overline{JK}=5\ units\\\\\overline{KL}=√((2-1)^2+(-2-2)^2) \\\overline{KL}=√(1^2+(-4)^2) \\\overline{KL}=√(1+16)\\ \overline{KL}=√(17) \ units\\\\


\overline{LM}=√((-3-2)^2+(-2-(-2))^2)\\ \overline{LM}=√((-5)^2+(-2+2)^2)\\ \overline{LM}=√(25+0^2) \\\overline{LM}=√(25) \\\overline{LM}=5\ units\\\\\overline{JM}=√((-3-(-4))^2+(-2-2)^2)\\ \overline{JM}=√((-3+4)^2+(-4)^2)\\ \overline{JM}=√(1^2+16)\\ \overline{JM}=√(17)\ units\\\\P=5+√(17)+5+√(17) \\\\ P=10+2√(17)\\\\P\approx18.2\ units

User Tanni Tanna
by
3.7k points