Answer:
![y=2(3^x)-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/o5ny9bi2zd7s3smr8cncjbpdywzcrrjgmb.png)
Explanation:
Exponential Function
![\large{\boxed{y=ab^x+c}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cnz31jfgf21ujhwkw7g5xq65wvci15g4fw.png)
where:
- a is the y-intercept.
- b is the base (growth/decay factor) in decimal form.
- c is the horizontal asymptote.
- x is the independent variable.
- y is the dependent variable.
From inspection of the graph:
- y-intercept = -2
⇒ a = -2 - horizontal asymptote: y = -4
⇒ c = -4
Substitute the found values of a and c into the formula:
![\implies y=-2(b)^x-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/bfhwli6rj5v7nfv7vd0gcwcfy6hr5u2gn1.png)
To find the value of b, substitute the point on the curve (1, 2) into the formula and solve for b:
![\begin{aligned}y & =-2b^x-4\\\implies 2 & =-2b^1-4\\2 & =-2b-4\\2+4 & =-2b-4+4\\6 & =-2b\\b & =(6)/(-2)\\b & =-3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ujfxy1bnxdmgx2bifb9ijnvgd55d9mawx.png)
Therefore, the exponential equation of the given graph is:
![\implies y=-2(-3^x)-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/brw7qn97p3m4n89d2r1bfekdmon6ergj0q.png)
![\implies y=2(3^x)-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/qlss7qvwdgr0rtlu1h5stehi50itausbmy.png)