2.5k views
0 votes
(3x-1)^3 binomial cube
PLS FAST!!!!

2 Answers

2 votes

Answer: (3x-1)³=27x^3-27x^2+9x-1

Explanation:


(3x-1)^3=\\\\(3x)^3-3(3x)^2(1)+3(3x)(1^2)-1^3=\\\\3^3x^3-3(3^2x^2)+9x-1=\\\\27x^3-3(9x^2)+9x-1=\\\\27x^3-27x^2+9x-1\\\\\\(3x-1)^3=\\\\C^9_3(3x)^3(-1)^0+C^1_3(3x)^2(-1)^1+C^2_3(3x)^1(-1)^2+C^3_3(3x)^0(-1)^3=\\\\(3!)/((3-0)!*0!)(3^3x^3)(1)+(3!)/((3-1)^*1!)(3^2x^2)(-1)+(3!)/((3-2)!*2!)(3x)( 1)+(3!)/((3-3)*3!) (1)(-1) =\\\\ (3!)/(3!*1) 27x^3-(2!*3)/(2!*1!) 9x^2+(2!*3)/(1!*2!) 3x-(3!)/(0!3!) =\\\\27x^3-27x^2+9x-1

User Dokme
by
7.4k points
2 votes

Answer:

27x^3 - 27x^2 + 9x -1.

Explanation:

(3x-1)^3 can be expanded by the binomial theorem;

(a-b)^n = a^n - na^(n-1)*b +n(n-1)a^(n-2)*b^2 - ….. na*b^(n-1)- b^n

So (3x-1)^3 = (3x)^3 - 3*(3x)^2*1 + 3*(3x)*1^2 - 1^3

= 27x^3 - 27x^2 + 9x -1.

User Lakshitha
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories