115k views
3 votes
Everyone please help me this in the photo (⁠ᗒ⁠ᗩ⁠ᗕ⁠)​

Everyone please help me this in the photo (⁠ᗒ⁠ᗩ⁠ᗕ⁠)​-example-1

1 Answer

1 vote

Answer:


\textsf{1.} \quad (20xy^2)/(7(xy-3))


\textsf{2.} \quad (1)/((x+5)(x-3))


\textsf{3.} \quad (a-1)/((a+1)(a-2))}

Explanation:

Question 1

Given:


\left((5(y+6))/(7(xy-3))\right) * \left((4xy^2)/(y+6)\right)


\textsf{Apply\:the\:fraction\:rule}:\quad (a)/(b)* (c)/(d)=(a* c)/(b* d)


\implies(5(y+6)4xy^2)/(7(xy-3)(y+6))


\textsf{Multiply the $5$ and $4$}:


\implies (20xy^2(y+6))/(7(xy-3)(y+6))


\textsf{Cancel the common factor $(y + 6)$}:


\implies (20xy^2)/(7(xy-3))

Question 2

Given:


\left((4)/(x^2-25)\right) * \left((x-5)/(4x-12)\right)


\textsf{Apply\:the\:fraction\:rule}:\quad (a)/(b)* (c)/(d)=(a* c)/(b* d)


\implies (4(x-5))/((x^2-25)(4x-12))


\textsf{Factor $x^2-25: \quad (x+5)(x-5)$}


\textsf{Factor $4x-12: \quad 4(x-3)$}


\implies (4(x-5))/(4(x+5)(x-5)(x-3))


\textsf{Cancel the common factor $4(x - 5)$}:


\implies (1)/((x+5)(x-3))

Question 3

Given:


\left((a^2-1)/(a^3+1)}\right) * \left((a^2-a+1)/(a^2-a-2)\right)


\textsf{Apply\:the\:fraction\:rule}:\quad (a)/(b)* (c)/(d)=(a* c)/(b* d)


\implies ((a^2-1)(a^2-a+1))/((a^3+1)(a^2-a-2))


\textsf{Factor $a^2-1: \quad (a+1)(a-1)$}


\textsf{Factor $a^3+1: \quad (a+1)(a^2-a+1)$}


\implies ((a+1)(a-1)(a^2-a+1))/((a+1)(a^2-a+1)(a^2-a-2))}


\textsf{Cancel the common factor $(a + 1)(a^2- a + 1)$}:


\implies (a-1)/(a^2-a-2)


\textsf{Factor the denominator}:


\implies (a-1)/((a+1)(a-2))}

Formulas used:


\boxed{\begin{minipage}{5.5cm}\underline{Difference of Two Squares Formula}\\\\$x^2-y^2=(x+y)(x-y)$\\\\ \underline{Sum of Cubes Formula}\\\\$x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)$\\\end{minipage}}

User Steve Pasetti
by
8.0k points