69.2k views
0 votes
Pls help to solve these 4 questions MAX POINTS

Pls help to solve these 4 questions MAX POINTS-example-1

1 Answer

6 votes

Answer:


\textsf{23.} \quad \left((f)/(g)\right)(x) = (x^2-x-4)/(2x-6)


\textsf{24.} \quad \left(f \circ g\right)(x) =4x^2-26x+38


\textsf{25.} \quad \left(g \circ f \right)(x) =2x^2-2x-14


\textsf{26.} \quad g\left(f\left(-1\right)\right)=-10

Explanation:

Given functions:


\begin{cases}f(x)=x^2-x-4\\g(x)=2x-6\end{cases}

Function composition is an operation that takes two functions and produces a third function.

Question 23

The composite function (f/g)(x) means to divide function f(x) by function g(x):


\begin{aligned}\left((f)/(g)\right)(x) & = (f(x))/(g(x))\\& = (x^2-x-4)/(2x-6)\end{aligned}

Question 24

The composite function (f o g)(x) means to substitute function g(x) in place of the x in function f(x):


\begin{aligned}\left(f \circ g\right)(x) & = f\left[g(x)\right]\\& = f(2x-6)\\& =(2x-6)^2-(2x-6)-4\\& =(2x-6)(2x-6)-2x+6-4\\& =4x^2-24x+36-2x+2\\& =4x^2-24x-2x+36+2\\& =4x^2-26x+38\end{aligned}

Question 25

The composite function (g o f)(x) means to substitute function f(x) in place of the x in function g(x):


\begin{aligned}\left(g \circ f \right)(x) & = g\left[f(x)\right]\\& = g(x^2-x-4)\\&=2(x^2-x-4)-6\\&=2x^2-2x-8-6\\&=2x^2-2x-14\end{aligned}

Question 26

The composite function g(f(-1)) means to substitute x = -1 into function f(x) then substitute this result in place of the x in function g(x):


\begin{aligned}g\left(f\left(-1\right)\right) & = g\left((-1)^2-(-1)-4\right)\\& = g\left(1+1-4\right)\\& = g\left(-2\right)\\&=2(-2)-6\\&=-4-6\\&=-10\end{aligned}

User ShivaGuntuku
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories