Answer:




Explanation:
Given functions:

Function composition is an operation that takes two functions and produces a third function.
Question 23
The composite function (f/g)(x) means to divide function f(x) by function g(x):

Question 24
The composite function (f o g)(x) means to substitute function g(x) in place of the x in function f(x):
![\begin{aligned}\left(f \circ g\right)(x) & = f\left[g(x)\right]\\& = f(2x-6)\\& =(2x-6)^2-(2x-6)-4\\& =(2x-6)(2x-6)-2x+6-4\\& =4x^2-24x+36-2x+2\\& =4x^2-24x-2x+36+2\\& =4x^2-26x+38\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/50j6x3wbf5cy5z5s7xmnwbnm88mexo3oiq.png)
Question 25
The composite function (g o f)(x) means to substitute function f(x) in place of the x in function g(x):
![\begin{aligned}\left(g \circ f \right)(x) & = g\left[f(x)\right]\\& = g(x^2-x-4)\\&=2(x^2-x-4)-6\\&=2x^2-2x-8-6\\&=2x^2-2x-14\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/54faoyurn5yh9bvqltke8pyzmti2nod752.png)
Question 26
The composite function g(f(-1)) means to substitute x = -1 into function f(x) then substitute this result in place of the x in function g(x):
