Answer:
![\textsf{1.} \quad (2a+3b)\; \sf pesos](https://img.qammunity.org/2023/formulas/mathematics/high-school/5sqebsx8wgq8qjz95qww5jrdbqak9omuyu.png)
![\textsf{2.} \quad (2x^2-3x^2+4x-6)\; \sf reams](https://img.qammunity.org/2023/formulas/mathematics/high-school/8zigi99lj38p5lc9llhojfe0hcn0l0zjfh.png)
![\textsf{3.} \quad (5x-1)\; \sf km/h](https://img.qammunity.org/2023/formulas/mathematics/high-school/6tffyk27cy9874pu83s0p558coda95t55i.png)
Explanation:
Dividend : A number/expression that is divided by the divisor.
Divisor : The number/expression that divides the dividend.
Quotient : The result obtained by the division.
Remainder : The number/expression left behind.
Long division method
- Divide the first term of the dividend by the first term of the divisor, and put that in the answer.
- Multiply the divisor by that answer, put that below the dividend.
- Subtract to create a new dividend.
- Repeat.
The solution is the quotient plus the remainder divided by the divisor.
Question 1
Using long division:
![\large \begin{array}{r}2a+3b\phantom{))}\\3a-2b{\overline{\smash{\big)}\,6a^2+5ab-6b^2\phantom{)}}}\\{-~\phantom{(}\underline{(6a^2-4ab)\phantom{-b)..)}}\\9ab-6b^2\phantom{)}\\-~\phantom{()}\underline{(9ab-6b^2)\phantom{}}\\0\phantom{))}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d8pjmjendfuwhoy6viom6mcqh9hzubh7vx.png)
Question 2
Using long division:
![\large \begin{array}{r}2x^3-3x^2+4x-6\phantom{)}\\3x-4{\overline{\smash{\big)}\,6x^4-17x^3+24x^2-34x+24\phantom{)}}}\\{-~\phantom{(}\underline{(6x^4-8x^3)\phantom{-bbbbbbbbbbbbbbbbb.)}}\\-9x^3+24x^2-34x+24\phantom{)}\\-~\phantom{()}\underline{(-9x^3+12x^2)\phantom{bbbbbbbbbbb.}}\\12x^2-34x+24\phantom{)}\\-~\phantom{()}\underline{(12x^2-16x)\phantom{bbbb..}}\\-18x+24\phantom{)}\\-~\phantom{()}\underline{(-18x+24)}\\0\phantom{)}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bh9plkxw2d89t9vlys1piqoo2r4gsf6nqz.png)
Question 3
Using long division:
![\large \begin{array}{r}5x-1\phantom{)}\\3x+2{\overline{\smash{\big)}\,15x^2+7x-2\phantom{)}}}\\{-~\phantom{(}\underline{(15x^2+10x)\phantom{-b)}}\\-3x-2\phantom{)}\\-~\phantom{()}\underline{(-3x-2)\phantom{}}\\0\phantom{)}\\\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bsyzio9k5qbnpubcm5mdxjw023zq8b3cvj.png)