164k views
2 votes
LESSON: DIVISION OF POLYNOMIALS

Solve the following problems. Show your complete solutions and use long division method or synthetic division to find the quotient.

1. The total cost of (3a - 2b) units of cell phone is (6a² + 5ab - 6b²) pesos. What expression represents the cost of one cell phone?

2. If one ream of bond paper costs (3x - 4) pesos, how many reams can you buy for (6x⁴ - 17x³ + 24x² - 34x + 24) pesos?

3. If a car covers (15x² + 7x - 2) km in (3x + 2) hours, what is the average speed in km/hr?


GOOD FOR 80 PTS!!!​

1 Answer

3 votes

Answer:


\textsf{1.} \quad (2a+3b)\; \sf pesos


\textsf{2.} \quad (2x^2-3x^2+4x-6)\; \sf reams


\textsf{3.} \quad (5x-1)\; \sf km/h

Explanation:

Dividend : A number/expression that is divided by the divisor.

Divisor : The number/expression that divides the dividend.

Quotient : The result obtained by the division.

Remainder : The number/expression left behind.

Long division method

  • Divide the first term of the dividend by the first term of the divisor, and put that in the answer.
  • Multiply the divisor by that answer, put that below the dividend.
  • Subtract to create a new dividend.
  • Repeat.

The solution is the quotient plus the remainder divided by the divisor.

Question 1

Using long division:


\large \begin{array}{r}2a+3b\phantom{))}\\3a-2b{\overline{\smash{\big)}\,6a^2+5ab-6b^2\phantom{)}}}\\{-~\phantom{(}\underline{(6a^2-4ab)\phantom{-b)..)}}\\9ab-6b^2\phantom{)}\\-~\phantom{()}\underline{(9ab-6b^2)\phantom{}}\\0\phantom{))}\end{array}

Question 2

Using long division:


\large \begin{array}{r}2x^3-3x^2+4x-6\phantom{)}\\3x-4{\overline{\smash{\big)}\,6x^4-17x^3+24x^2-34x+24\phantom{)}}}\\{-~\phantom{(}\underline{(6x^4-8x^3)\phantom{-bbbbbbbbbbbbbbbbb.)}}\\-9x^3+24x^2-34x+24\phantom{)}\\-~\phantom{()}\underline{(-9x^3+12x^2)\phantom{bbbbbbbbbbb.}}\\12x^2-34x+24\phantom{)}\\-~\phantom{()}\underline{(12x^2-16x)\phantom{bbbb..}}\\-18x+24\phantom{)}\\-~\phantom{()}\underline{(-18x+24)}\\0\phantom{)}\end{array}

Question 3

Using long division:


\large \begin{array}{r}5x-1\phantom{)}\\3x+2{\overline{\smash{\big)}\,15x^2+7x-2\phantom{)}}}\\{-~\phantom{(}\underline{(15x^2+10x)\phantom{-b)}}\\-3x-2\phantom{)}\\-~\phantom{()}\underline{(-3x-2)\phantom{}}\\0\phantom{)}\\\end{array}

User Dsb
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories