227k views
2 votes

\int{\sqrt{9+x^(2) } } \, dx

User KamalDeep
by
7.7k points

1 Answer

6 votes

Answer:

This is the integral


(9)/(2)\left(sin^(-1)\left((x)/(3) \right)+(x)/(3)\sqrt{1-\left((x)/(3)^2 \right)} \right) + C

Explanation:

Setup/solve


sin^2A+cos^2A=1\\\mathrm{and}\:\: cos^2A=2cos^2A-1\\sin^2A=2sinA \cdot cosA\\\mathrm{where}\:\: x=3sin\:t\\\int√(9-x^2) dx=\int3√(1-sin^2t) \cdot 3cos\:tdt=9\int cos^2\:tdt\\9\int cos^2\:tdx = (9)/(2) \int(1 + cos2t)dt = (9)/(2)\left(t + (1)/(2)sin\:2t \right) + C

Lastly, describe this in terms of x


\int √(9-x^2)dx=(9)/(2)\left(sin^(-1)\left((x)/(3) \right)+(x)/(3)\sqrt{1-\left((x)/(3)^2 \right)} \right) + C

I hope this helps, and have a good day!

User Markus Dutschke
by
6.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories