35.0k views
2 votes
h(x) = 3(x+1)(x+3)(x-4) for each polynomial function rewrite in standard form and state its degree and constant

2 Answers

3 votes

Answer:


3x^3-39x-36

Explanation:


\mathrm{Expand\:}\left(x+1\right)\left(x+3\right) $ by applying the FOIL method: $\left(a+b\right)\left(c+d\right)=ac+ad+bc+bd$


\left(x+1\right)\left(x+3\right)=x^2+x\cdot \:3+1\cdot \:x+1\cdot \:3


=x^2+4x+3


\mathrm $Thus $ 3\left(x+1\right)\left(x+3\right)\left(x-4\right)\\\\=3\left(x^2+4x+3\right)\left(x-4\right)\\\\


= (3x^2 + 12x + 9)(x - 4)


= x(3x^2 + 12x + 9) -4 (3x^2 + 12x + 9)\\\\= 3x^3 + 12x^2 + 3x - 12x^2 - 48x - 36)\\\\= 3x^3 + (12x^2 - 12x^2) + (9x - 48x) -36\\\\= 3x^3-39x-36


User GrumP
by
3.8k points
6 votes

Answer:


{ \tt{h(x) = 3(x + 1)(x + 3)(x - 4)}} \\ \\ { \tt{h(x) = 3 \{( {x}^(2) + 4x + 3)(x - 4) \} }} \\ \\ { \tt{h(x) = 3 \{ {(x}^(3) - {4x}^(2) + {4x}^(2) - 8x + 3x - 12) \} }} \\ \\ { \tt{h(x) = 3( {x}^(3) - 5x - 12) }} \\ \\ { \tt{h(x) = 3 {x}^(3) - 15x - 36 }}

Third degree polynomial with a constant of -36

User Sveinungf
by
3.8k points