35.0k views
2 votes
h(x) = 3(x+1)(x+3)(x-4) for each polynomial function rewrite in standard form and state its degree and constant

2 Answers

3 votes

Answer:


3x^3-39x-36

Explanation:


\mathrm{Expand\:}\left(x+1\right)\left(x+3\right) $ by applying the FOIL method: $\left(a+b\right)\left(c+d\right)=ac+ad+bc+bd$


\left(x+1\right)\left(x+3\right)=x^2+x\cdot \:3+1\cdot \:x+1\cdot \:3


=x^2+4x+3


\mathrm $Thus $ 3\left(x+1\right)\left(x+3\right)\left(x-4\right)\\\\=3\left(x^2+4x+3\right)\left(x-4\right)\\\\


= (3x^2 + 12x + 9)(x - 4)


= x(3x^2 + 12x + 9) -4 (3x^2 + 12x + 9)\\\\= 3x^3 + 12x^2 + 3x - 12x^2 - 48x - 36)\\\\= 3x^3 + (12x^2 - 12x^2) + (9x - 48x) -36\\\\= 3x^3-39x-36


User GrumP
by
7.6k points
6 votes

Answer:


{ \tt{h(x) = 3(x + 1)(x + 3)(x - 4)}} \\ \\ { \tt{h(x) = 3 \{( {x}^(2) + 4x + 3)(x - 4) \} }} \\ \\ { \tt{h(x) = 3 \{ {(x}^(3) - {4x}^(2) + {4x}^(2) - 8x + 3x - 12) \} }} \\ \\ { \tt{h(x) = 3( {x}^(3) - 5x - 12) }} \\ \\ { \tt{h(x) = 3 {x}^(3) - 15x - 36 }}

Third degree polynomial with a constant of -36

User Sveinungf
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories