149k views
1 vote
Find the area of this figure. Round your answer to the nearest hundredth. Use 3.14 to approximate pi. 8ft by 10ft

Find the area of this figure. Round your answer to the nearest hundredth. Use 3.14 to-example-1

1 Answer

5 votes

Answer:


\large \bf \implies{105.12 \: {ft}^(2) }

Explanation:


\bf{Semi \: rectangle \: = \: length \: × \: width }\\ \\ \bf{Semi \: circle \: = \: \pi{r}^(2) } \: \: \: \: \: \: \: \bigg [r = (d)/(2) \bigg ] \\ \\ \bf{ S \: = \: 8 * 10 + (1)/(2) * \pi * \bigg( (8)/(2) \bigg)^(2) } \\ \\ \bf{= 80 + (1)/(2) * 3.14 * {4}^(2) }\: \: \: \: \: \: \\ \\ \bf{= 105.12 \: {ft}^(2) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:


\: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{OR}

We can divide the area in two parts :

  1. The left part is a rectangle with length 10ft and width 8ft
  2. The right part is a semicircle with diameter 8ft.

So, Area of the left rectangular part

= length x width

= 10 × 8 ft²

= 80 ft²

Now, diameter of the semicircular part = 8 ft

So, radius

=
\bf(diameter)/(2)

=
\bf(8)/(2) ft

= 4 ft

So, area of the right semicircular part


\bf{= (1)/(2) * \pi * radius^2}


\bf{= (1)/(2) * 3.14 × 4^2 ft^2}


\bf{= 25.12 \: ft^2}

Total area ,

= Area of the left rectangular part + Area of the right semicircular part


\bf{= 80 \: {ft}^(2) + 25.12 \: {ft}^(2)}


\bf{= 105.12 \: {ft}^(2) }

User Timshel
by
5.1k points