145k views
3 votes
Study the equations:

f(x)=11x-5

g(x)=-2x-4

What is h(x) = f(x) g(x)

Study the equations: f(x)=11x-5 g(x)=-2x-4 What is h(x) = f(x) g(x)-example-1

1 Answer

3 votes

Answer:


h(x)=-22x^2-34x+20

Explanation:

Given functions:


\begin{cases}f(x)=11x-5\\g(x)=-2x-4\end{cases}

Function composition is an operation that takes two functions and produces a third function.

Therefore, the given composite function f(x)g(x) means to multiply the function g(x) by the function f(x):


\begin{aligned}\implies h(x)&=f(x)g(x)\\& = (11x-5)(-2x-4)\\&=11x(-2x-4)-5(-2x-4)\\&=11x(-2x)+11x(-4)-5(-2x)-5(-4)\\&=-22x^2-44x+10x+20\\&=-22x^2-34x+20\end{aligned}

Therefore:


\boxed{h(x)=-22x^2-34x+20}

User Honza Dejdar
by
3.3k points