Answer:
![\begin{equation*}% \mbox{\large\( % - \left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/tn8o3omm3u21gy2xsnfj9nekszbaptv49z.png)
Explanation:
sin²(x) = 1 - cos²(x)
So the expression sin²(x) + 7cosx +7 becomes
1 - cos²(x) + 7cos(x) + 7
Group like terms
![\begin{equation*}% \mbox{\large\( %=-\cos ^2\left(x\right)+7\cos \left(x\right)+1+7 %\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/ucg4qaqtvzw51t35ckjsaij0z0uyoiomzj.png)
![\begin{equation*}% \mbox{\large\( %=-\cos ^2\left(x\right)+7\cos \left(x\right)+8 %\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/kjm2mdpjmw3e9bb7kda8djw6qe058j3nqn.png)
![\begin{equation*}% \mbox{\large\( %=-\cos ^2\left(x\right)+7\cos \left(x\right)+1+7 %\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/ucg4qaqtvzw51t35ckjsaij0z0uyoiomzj.png)
![\begin{equation*}% \mbox{\large\( %=7\cos \left(x\right)-\cos ^2\left(x\right)+8\)} %\end{equation}](https://img.qammunity.org/2023/formulas/mathematics/college/wwjcatma6snyaab558uuuok9ug9lk1c0gj.png)
![\begin{equation*}% \mbox{\large\( %=-\left(\cos ^2\left(x\right)-7\cos \left(x\right)-8\right)\)} %\end{equation}](https://img.qammunity.org/2023/formulas/mathematics/college/i18dx03eiqr5ojwft5fvu98ielw8kum1c5.png)
Let's deal with the expression in parenthesis
![\begin{equation}% \mbox{\large\( %=\cos ^2\left(x\right)-7\cos \left(x\right)-8\)} %\end{equation}](https://img.qammunity.org/2023/formulas/mathematics/college/8bv03imbfgo6cbydd4zf71pvjz2bufsc42.png)
![\begin{equation*}% \mbox{\large\( %=\cos ^2\left(x\right)-7\cos \left(x\right)-8)} %\end{equation}](https://img.qammunity.org/2023/formulas/mathematics/college/igcssnoxylak2alnzd1zp8upyiqi4xea7b.png)
![\begin{equation*}% \mbox{\large\( %\cos^2(x) - 7\cos(x)-8\)} %\end{equation*}\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/p7uu96rekkb5ub11kp2ggp96ys3nkchnmq.png)
This is of the form
![\begin{equation*}% \mbox{\large\( %ax^2 + bx + c\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/m38m0w0cmrtbkickali8npfg2x1u9l4r2i.png)
with a = 1, b = -7 and c = -8
To factor this find two values u and v such that
![\begin{equation*}% \mbox{\large\( %u\cdot v = -8, v + v = -7\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/6w00jq9l3bbgia4lehoi5csry1knxsyi2d.png)
If we choose u = 1 and v = -8 we can satisfy the above relationship since
u · v = 1 (-8) = -8 and u + v = 1 +(-8) = -7
![\displaysize {\textrm{Group\:into\:}\left(ax^2+ux\right)+\left(vx+c\right)}](https://img.qammunity.org/2023/formulas/mathematics/college/egq8zp1fcpvo5k3okp84oojeulgh0f3h3a.png)
![\begin{equation*}% \mbox{\large\( %\left(\cos ^2\left(x\right)+\cos \left(x\right)\right)+\left(-8\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/ay9m20viut1poxcax1jtt3skorwqzkfgtw.png)
![\textrm{Factor\:out}\:\cos \left(x\right)\:\mathrm{from}\:\cos ^2\left(x\right)+\cos \left(x\right)](https://img.qammunity.org/2023/formulas/mathematics/college/tkctgeiyf9ycs2q2rwpj910rszwxdd4m70.png)
![\begin{equation*}% \mbox{\large\( %=\cos \left(x\right)\left(\cos \left(x\right)+1\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/2kv9lj3ivxgm8x883reohrws9vmdyf529i.png)
![\textrm{Factor\:out}\:-8\:\mathrm{from}\:-8\cos \left(x\right)-8:](https://img.qammunity.org/2023/formulas/mathematics/college/69g0mxwnoh23alj6qq0b7uwkllgb4tpzqv.png)
![=-8\left(\cos \left(x\right)+1\right)](https://img.qammunity.org/2023/formulas/mathematics/college/3zvzsiiy2jwjqkyl75ly58jzr1z3bu526r.png)
So
![\begin{equation*}% \mbox{\large\( %\left(\cos ^2\left(x\right)+\cos \left(x\right)\right)+\left(-8\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/ay9m20viut1poxcax1jtt3skorwqzkfgtw.png)
=
![\begin{equation*}% \mbox{\large\( %\cos \left(x\right)\left(\cos \left(x\right)+1\right)-8\left(\cos \left(x\right)+1\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/i39yrj1n9a76xfvqbpz066xtif519uz1we.png)
![\textrm{Factor\:out\:common\:term\:}\cos \left(x\right)+1](https://img.qammunity.org/2023/formulas/mathematics/college/48vrwn7kyb4dsdqoq7aic67396rbe3c6lj.png)
![\begin{equation*}% \mbox{\large\( %=\left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/yt6p6w5c3hxyosze0kkp119ho7bcm2mbmb.png)
Since this was the term in the parenthesis with a leading negative sign, add the negative sign to get
![\begin{equation*}% \mbox{\large\( %= - \left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/bn1l8e5kc6uvi0wf8os6mmxjnpr8fnjrap.png)
![\begin{equation*}% \mbox{\large\( %= - \left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-8\right)\)} %\end{equation*}\\](https://img.qammunity.org/2023/formulas/mathematics/college/mxu0c8o4uuxgj4pzzea1blwohce9acu2de.png)
Answer:
![\begin{equation*}% \mbox{\large\( % - \left(\cos \left(x\right)+1\right)\left(\cos \left(x\right)-8\right)\)} %\end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/tn8o3omm3u21gy2xsnfj9nekszbaptv49z.png)