512,541 views
33 votes
33 votes
A rectangular lawn is 2 m longer than it is wide.

The area of the lawn is 21 m². The gardener wants to edge the lawn with edging strips
which are sold in lengths of 13 m. How many will she need to buy?

User Berezovskyi
by
2.6k points

2 Answers

24 votes
24 votes

Answer:

• width is y metres

• length is (2 + y) metres


{ \tt{area = length * width}} \\ \\ { \rm{21 = (2 + y)(y)}} \\ \\ { \rm{21 = 2y + {y}^(2) }} \\ \\ { \rm{ {y}^(2) + 2y - 21 = 0 }} \\ \\ { \rm{ \dashrightarrow \: by \: factorisation : }} \\ \\ { \boxed{ \rm{y \approx4 \: and \: - 6}}}

• Therefore, length = 4 + 2 = 6 meters

• The gardener will need;


= { \rm{ (13)/(6) }} \\ \\ = { \underline{ \underline{ \rm{ \: 3 \: strips \: \: }}}}

User Polymath
by
2.2k points
21 votes
21 votes

Let's breadth be x

  • Length be x+2

ATQ


\\ \sf\longmapsto x(x+2)=21


\\ \sf\longmapsto x^2+2x=21

  • Use completing the square method


\\ \sf\longmapsto 4(x^2+2x)=4(21)


\\ \sf\longmapsto 4x^2+8x=84


\\ \sf\longmapsto (2x)^2+2(2x)(2)=84


\\ \sf\longmapsto (2x)^2+2(2x)(2)+2^2=2^2+84


\\ \sf\longmapsto (2x+2)^2=88


\\ \sf\longmapsto 2x+2=\pm√(88)

  • As it's dimensions we will take positive


\\ \sf\longmapsto 2x+2\approx 9.7


\\ \sf\longmapsto 2x=9.7-2=7.7


\\ \sf\longmapsto x=3.8

  • x+2=3.8+2=5.8

Now


\\ \sf\longmapsto Perimeter=2(L+B)


\\ \sf\longmapsto perimeter=2(3.8+5.8)


\\ \sf\longmapsto perimeter=2(9.6)


\\ \sf\longmapsto Perimeter=19.2m

  • Length of 1 strip=13m

Total strips


\\ \sf\longmapsto (19.2)/(13)


\\ \sf\longmapsto 1.47strips

  • She needs 2 strips
User Joehua
by
2.8k points