154k views
2 votes

\rm\sum_(k = 1)^ \infty (1)/(k(k + n)) = (H_n)/(n) \\

User Suhdonghwi
by
7.5k points

1 Answer

4 votes

Pretty straightforward. Partial fractions, then observe the tail ends of the two subsequent sums cancel each other.


\displaystyle \sum_(k=1)^\infty \frac1{k(k+n)} = \frac1n \sum_(k=1)^\infty \left(\frac1k - \frac1{k+n}\right) \\\\ ~~~~~~~~~~~~~~~~~~ = \frac1n \left(\sum_(k=1)^\infty \frac1k - \sum_(k=1)^\infty \frac1{k+n}\right) \\\\ ~~~~~~~~~~~~~~~~~~ = \frac1n \left(\sum_(k=1)^\infty \frac1k - \sum_(k=n+1)^\infty \frac1k\right) \\\\ ~~~~~~~~~~~~~~~~~~ = \frac1n \sum_(k=1)^n \frac1k \\\\ ~~~~~~~~~~~~~~~~~~ = \frac{H_n}n

where


\displaystyle \sum_(k=1)^n \frac1k = H_n

is the
n-th harmonic number.

User Jibysthomas
by
7.7k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories