74.9k views
4 votes

\rm\sum_(n = 1)^ \infty \frac{ \coth(\pi nx) + x \coth \bigg( (\pi n)/(x) \bigg) }{ {n}^(3) } \\

User Ehontz
by
5.1k points

1 Answer

4 votes

Recalling the Mittag-Leffler expansion for the hyperbolic cotangent,


\displaystyle \coth(\pi z) = -\frac1{\pi z} + \frac{2z^2}\pi \sum_(m=1)^\infty \frac1{z^2+m^2}

which, by symmetry, is the same as


\displaystyle \coth(\pi z) = -\frac1{\pi z} + \frac{z^2}\pi \sum_(m\in A) \frac1{z^2+m^2}

where
A = \Bbb Z \setminus \{0\}.

By symmetry again, the given sum is


\displaystyle S = \sum_(n=1)^\infty \frac{\coth(\pi n x) + x \coth\left(\frac{\pi n}x\right)}{n^3} = \frac12 \sum_(n\in A) \frac{\coth(\pi n x) + x \coth\left(\frac{\pi n}x\right)}{n^3}

Now rewrite the summand using the M-L expansion.


\displaystyle S = \frac12 \sum_(n\in A) \frac1{n^3} \left(-\frac1{\pi nx} + \frac{n^2x^2}\pi \sum_(m\in A) \frac1{n^2x^2+m^2} - \frac x{\pi n} + (n^2)/(\pi x^2) \sum_(m\in A) \frac1{(n^2)/(x^2) + m^2}\right) \\\\ = -\frac1{2\pi x} \left[(x^3+1)\sum_(n\in A)\frac1{n^4} - x^3 \sum_((m,n)\in A^2) \frac1n\cdot\frac1{n^2x^2+m^2} - x^2 \sum_((m,n)\in A^2) \frac1n\cdot\frac1{m^2x^2+n^2}\right]

By symmetry,


\displaystyle \sum_((m,n)\in A^2) \frac1n \cdot \frac1{m^2x^2+n^2} = \sum_((m,n)\in A^2) \frac1m\cdot\frac1{n^2x^2+m^2}

and recalling the definition of the Riemann zeta function, this brings us to


\displaystyle S = -\frac{\zeta(4)}\pi \cdot \frac{x^3+1}x + \frac1{2\pi x} \sum_((m,n)\in A^2) \left(\frac{x^3}n + \frac{x^2}m\right) \frac1{n^2x^2+m^2}

and that's unfortunately as far as I've gotten...

User Oliver Watkins
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.