Recalling the Mittag-Leffler expansion for the hyperbolic cotangent,
![\displaystyle \coth(\pi z) = -\frac1{\pi z} + \frac{2z^2}\pi \sum_(m=1)^\infty \frac1{z^2+m^2}](https://img.qammunity.org/2023/formulas/mathematics/college/45y4z7k5f26yqz513xsbku7zxhtwie6m14.png)
which, by symmetry, is the same as
![\displaystyle \coth(\pi z) = -\frac1{\pi z} + \frac{z^2}\pi \sum_(m\in A) \frac1{z^2+m^2}](https://img.qammunity.org/2023/formulas/mathematics/college/c678pa84jbpqqqljzy35k4mm9wo2fhckt4.png)
where
.
By symmetry again, the given sum is
![\displaystyle S = \sum_(n=1)^\infty \frac{\coth(\pi n x) + x \coth\left(\frac{\pi n}x\right)}{n^3} = \frac12 \sum_(n\in A) \frac{\coth(\pi n x) + x \coth\left(\frac{\pi n}x\right)}{n^3}](https://img.qammunity.org/2023/formulas/mathematics/college/9d8jyoym468uis4n90oosz3lm38wpnoazl.png)
Now rewrite the summand using the M-L expansion.
![\displaystyle S = \frac12 \sum_(n\in A) \frac1{n^3} \left(-\frac1{\pi nx} + \frac{n^2x^2}\pi \sum_(m\in A) \frac1{n^2x^2+m^2} - \frac x{\pi n} + (n^2)/(\pi x^2) \sum_(m\in A) \frac1{(n^2)/(x^2) + m^2}\right) \\\\ = -\frac1{2\pi x} \left[(x^3+1)\sum_(n\in A)\frac1{n^4} - x^3 \sum_((m,n)\in A^2) \frac1n\cdot\frac1{n^2x^2+m^2} - x^2 \sum_((m,n)\in A^2) \frac1n\cdot\frac1{m^2x^2+n^2}\right]](https://img.qammunity.org/2023/formulas/mathematics/college/p4j5inbyq7x8b0w19jap8zmrjri3hpibtq.png)
By symmetry,
![\displaystyle \sum_((m,n)\in A^2) \frac1n \cdot \frac1{m^2x^2+n^2} = \sum_((m,n)\in A^2) \frac1m\cdot\frac1{n^2x^2+m^2}](https://img.qammunity.org/2023/formulas/mathematics/college/w8g4n9jpjz1hctrcqdyrpf1x9490gvbr9p.png)
and recalling the definition of the Riemann zeta function, this brings us to
![\displaystyle S = -\frac{\zeta(4)}\pi \cdot \frac{x^3+1}x + \frac1{2\pi x} \sum_((m,n)\in A^2) \left(\frac{x^3}n + \frac{x^2}m\right) \frac1{n^2x^2+m^2}](https://img.qammunity.org/2023/formulas/mathematics/college/zx32r7ykab90x8owrpm1dunx6h1kemv7f8.png)
and that's unfortunately as far as I've gotten...