Answer:
Assuming this is a system of equations...
Point form > (3, 9)
Equation form > x = 3, y = 9
Explanation:
So we need to solve for x in 7x - 5y = -24
Add 5y to both sides
7x = -24 + 5y
-9x + 5y = 18
Divide each term by 7
7x/7 = -24/7 + 4y/7
-9x + 5y = 18
x = -24/7 + 5y/7
-9x + 5y = 18
Now we need to replace all occurences of x with -24/7 + 5y/7
-9(-24/7 + 5y/7) + 5y = 18
x = -24/7 + 5y/7
So lets focus on simplifying -9(-24/7 + 5y/7) + 5y
Apply the distributive property
-9(-24/7) - 9 5y/7 + 5y = 18
Now multiply -9(-24/7)
So -1 by -9
9(24/7) - 9 5y/7 + 5y = 18
Combine 9 and 24/7
9 * 24/7 - 9 5y/7 + 5y = 18
Then Multiply 9 by 24
216/7 - 9 5y/7 + 5y = 18
Now we multiply -9 5y/7
So Combine -9 and 5y/7
216/7 + -9(5y)/7 + 5y = 18
Now Multiply 5 by -9
216/7 + -45y/7 + 5y = 18
Move the negative
216/7 - 45y/7 + 5y = 18
Now we need to multiply by 7/7 to make 5y a fraction with a common denom.
216/7 - 45y/7 + 5y * 7/7 = 18
Combine
216/7 + -45y + 5y * 7/7 = 18
Combine further
216 - 45y + 5y * 7/7 = 18
Multiply
216 - 45y + 35y
Add
216 - 10y/7 = 18
Factor 2 out of the equation
2(108) - 10y/7 = 18
Factor more
2(108) + 2(-5y)/7 = 18
Factor further
2(108 - 5y)/7 = 18
Now we want to solve for y in 2(108 - 5y)/7 = 18
Multiply both sides by 7 then simplify.
2(108 - 5y) * 7/7 = 18 * 7
2 * 108 + 2 (-5y) = 18 * 7
Multiply
216 + 2 (-5y) = 18 * 7
Multiply again
216 - 10y = 18 * 7
Reorder 216 and -10y
-10y + 216 = 18 * 7
Simplify the right side
-10y + 216 = 126
Now we need to solve for y
So lets move all terms not containing y to the right side.
-10y = 126 - 216 (Subtract 216 from both sides)
-10y = -90
Divide each term by -10
-10y/-10 = -90/-10
Simplify the left side
-90/10
And the right side
y = 9
x = -24/7 + 5y/7
Now replace y with 9
-24/7 + 5(9)/7
Simplify the right side
-24 + 5(9)/7
Multiply
-24 + 45
Add
21/7
x = 3
Therefore x = 3, y = 9 > (3, 9)