111k views
0 votes
10m3n2o5 - 25m4no =

What is the answer?

1 Answer

2 votes

Answer:

Explanation:

This "subtraction problem" involves: "one value" minus "another value":
The first value is: " 10m³n²σ⁵ " ;

The second value is: 25m⁴nσ " ;
_________________________
The problem to be solved is:
" 10m³n²σ⁵ 25m⁴nσ = ?? ;

Let us "factor out" what we can—considering the two (2) values:
1) " 10m³n²σ⁵ " ; and:
2) " 25m⁴nσ " ;

The GCF ["Greatest Common Factor"] of:
"10" and "25" :
______________________
List the factors for Both "10" and for "25"—as follows:

10: 1, 2, 5, 10.
25: 1, 5, 25.
The GCF for "10 and 25" is "5".
→ Note that the GCF for " m³ and m⁴ " is "m³ ."

→ Note that the GCF for: " and n" is "n". {Note: " n = ".}

→ Note that the GCF for: " σ⁵ and "σ" is "σ". {Note: " σ = σ¹ ".}

So, the GCF for entire problem:

Factor out: " 5m³nσ"

________________________

The first expression:
10m³n²σ⁵ ;

Factor out: (5m³nσ} ;

(5m³nσ} (2*1*nσ⁴}
= (5m³nσ} (2nσ⁴}

______________________

The second expression:
25m⁴nσ ;

Factor out:
(5m³nσ} (5m*1*1} ;

= {5m³nσ} (5m} .

________________________
So:

(5m³nσ} (2nσ⁴} − (5m³nσ} (5m} ;


= {5m
³nσ} * (2nσ⁴ − 5m) ; {Note: {" ax − ay = a(x − y) "}.

Now, simplify:

{5m³nσ} * (2nσ⁴ − 5m) =

{5m³nσ} * 1(2nσ⁴ − 5m) ;

→ 1 (2nσ⁴ − 5m) ; Note: a(b+c) = ab + ac ;

a(b−c) = ab − ac ;

1 (2nσ⁴ − 5m) = 2nσ⁴ + (-5m)

= 2nσ⁴ − 5m ;
Now bring down the:

{5m³nσ} ; and rewrite:
⇒ {5m
³nσ}*(2nσ⁴ − 5m); Note: a(b+c) = ab + ac ; ==> again:
in which: a = 5m
³nσ ; b = 2nσ⁴ ; c = -5m ;
→ {5m
³nσ}*(2nσ⁴ - 5m} =
[5m
³nσ}*(2nσ⁴} + {5m³nσ}{-5m) ;

Start with the "left-hand side" of the problem; ^directly above:
[5m
³nσ}*(2no⁴} = 5*2*m³*n²σ⁵ = 10m³*n²σ⁵ ;

Then: We shall examine the "right-hand side" of the above:
"{5m
³nσ}{-5m)" ;

→ {-25m⁴nσ);

________________
Then, we shall add these values together:
10
m³*n²σ⁵ + (-25m⁴nσ);

= 10m³*n²σ⁵ − 25m⁴nσ);

User CyberPlayerOne
by
4.8k points