191,558 views
2 votes
2 votes
Solve the following inequality for x:
2x2– 2 ≤ 3x

User CliffC
by
2.3k points

2 Answers

19 votes
19 votes

Answer:

x ∈
[-(1)/(2),2]

Explanation:

User Mfreeman
by
3.0k points
22 votes
22 votes

let's solve for x :


  • 2 {x}^(2) - 2 \leqslant 3x


  • 2 {x}^(2) - 3x - 2 \leqslant 0


  • 2 {x}^(2) - 4x + x - 2 \leqslant 0


  • 2x(x - 2) + 1(x - 2) \leqslant 0


  • (2x + 1)(x - 2) \leqslant 0

Case 1 :


  • (2x + 1) \leqslant 0


  • 2x \leqslant - 1


  • x \leqslant - ( 1)/(2)

Case 2 :


  • x - 2 \leqslant 0


  • x \leqslant 2

combining both inequalities we get :


  • x \leqslant - (1)/(2)

User Yajuvendra Vant
by
2.7k points