27.6k views
4 votes

\rm \sum_(n = 0)^ \infty \frac{( - 1) {}^(n) \zeta(n) }{ {2}^(n) } \\

User Kohske
by
4.0k points

1 Answer

3 votes

Assuming the correction I suggested in comments, our sum is


\displaystyle S = \sum_(n=2)^\infty ((-1)^n \zeta(n))/(2^n)

Rewrite with the definition of the Riemann zeta function, and condense the subsequent double series.


\displaystyle S = \sum_(n=2)^\infty ((-1)^n)/(2^n) \sum_(m=1)^\infty \frac1{m^n} \\\\ ~~~~ = \sum_(n=2)^\infty \sum_(m=1)^\infty \left(-\frac1{2m}\right)^n

The condition for Fubini's theorem is met so we can interchange the sums.


\displaystyle S = \sum_(m=1)^\infty \sum_(n=2)^\infty \left(-\frac1{2m}\right)^n

Sum the geometric series.


\displaystyle S = \sum_(m=1)^\infty \left(\sum_(n=0)^\infty \left(-\frac1{2m}\right) - 1 + \frac1{2m}\right) \\\\ ~~~~ = \sum_(m=1)^\infty \left(\frac1{1+\frac1{2m}} - 1 + \frac1{2m}\right) \\\\ ~~~~ = \sum_(m=1)^\infty \left(\frac1{2m} - \frac1{2m+1}\right)

Considering the terms in the summand as even/odd parts, we can condense this further to the alternating series


\displaystyle S = \sum_(m=2)^\infty \frac{(-1)^m}m

and recalling the power series


\displaystyle \ln(1+x) = - \sum_(n=1)^\infty \frac{(-x)^n}n

we let
x=1; it follows that


\displaystyle S = \sum_(m=1)^\infty \frac{(-1)^m}m + 1 = \boxed{1 - \ln(2)}

User Bryanne
by
3.1k points