Answer:
for (−4/5)x + 3/10 < 8/10: solution is x > -5/8
for −4/(5x) + 3/10 < 8/10: solution is x > -8/5
Explanation:
I'm not exactly sure if you mean -4 divided by 5x or (-4/5)x, so I've done both! :)
![-(4)/(5)x+ (3)/(10) < (8)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/w8fa4cskrus8uc2tbr144colf05z0fl5g8.png)
subtract 3/10 from both sides:
![-(4)/(5)x < (5)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/lxrexbk3pm2pxxevgtwearaw1pqk5hzequ.png)
Divide both sides by 4/5:
![-x < (5)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/u1ogapp5wb86mlvfe6vnv8t54ypm9xyfqu.png)
Divide both sides by -1 (reverse sign):
![x > -(5)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/qiwtdinw240b9efsu0n6purlxdkrira5rg.png)
![-(4)/(5x)+ (3)/(10) < (8)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/qsypfax9d4lyd4j20zgp9mrg8orowp9pea.png)
subtract 3/10 from both sides:
![-(4)/(5x) < (5)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/9wgft4sy616f7xnbhqw0lm3b9ohzk8mctg.png)
Multiply both sides by 5x:
![-4 < (5)/(2)x](https://img.qammunity.org/2023/formulas/mathematics/college/x0254n077sua24v5br5iw6myfx3albrx6w.png)
Divide both sides by 5/2:
![x>- (8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/8olueqcnixxlcaxgkr7gpgq5xpmwv5cgk6.png)