17.9k views
4 votes
This is for my algebra class and this calculus stuff honestly hurts my brain, help would be appreciated

This is for my algebra class and this calculus stuff honestly hurts my brain, help-example-1

1 Answer

7 votes

Answer:


\ln |x+2|+\ln |x-3|+\text{C}

Explanation:

Fundamental Theorem of Calculus


\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\frac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:


\displaystyle \int (2x-1)/(x^2-x-6)\: \text{d}x

Factor the denominator:


\begin{aligned}\implies x^2-x-6 & = x^2-3x+2x-6\\& = x(x-3)+2(x-3)\\& = (x+2)(x-3)\end{aligned}


\implies \displaystyle \int (2x-1)/(x^2-x-6)\: \text{d}x=\int (2x-1)/((x+2)(x-3))\: \text{d}x

Take partial fractions of the given fraction by writing out the fraction as an identity:


\begin{aligned}\implies (2x-1)/((x+2)(x-3)) & \equiv (A)/(x+2)+(B)/(x-3)\\\\\implies (2x-1)/((x+2)(x-3)) & \equiv (A(x-3))/((x+2)(x-3))+(B(x+2))/((x+2)(x-3))\\\\\implies 2x-1 & \equiv A(x-3)+B(x+2)\end{aligned}

Calculate the values of A and B using substitution:


\textsf{When }x=-2 \implies -5 =A(-5)+B(0) \implies A=1


\textsf{When }x=3 \;\;\: \implies 5 =A(0)+B(5) \;\;\;\;\;\: \implies B=1

Substitute the found values of A and B into the identity:


\implies (2x-1)/((x+2)(x-3)) & \equiv (1)/(x+2)+(1)/(x-3)

Therefore:


\begin{aligned}\implies \displaystyle \int (2x-1)/((x+2)(x-3)) \: \text{d}x & =\int (1)/(x+2)+(1)/(x-3)\: \text{d}x\\\\ & =\int (1)/(x+2) \: \text{d}x+ \int (1)/(x-3)\: \text{d}x\\\\ & = \ln |x+2|+\ln |x-3|+\text{C}\end{aligned}

Integration rules used:


\boxed{\begin{minipage}{6.8cm}\underline{Integrating $f(x)+g(x)$}\\\\$\displaystyle \int f(x)+g(x)\:\text{d}x=\int f(x)\:\text{d}x+\int g(x)\:\text{d}x$\end{minipage}}


\boxed{\begin{minipage}{4.8 cm}\underline{Integrating $(k)/(x+a)$}\\\\$\displaystyle \int (k)/(x+a)\:\text{d}x=k\ln |x+a|+\text{C}$\end{minipage}}

User IAmYourFaja
by
3.8k points