147k views
1 vote
Solve the following system of equations using either Gaussian elimination or a matrix. Write your answer as a point and explain how you would check your work:

2x - y + 4z = 33
x + 2y - 3z = -26
-5 x - 3y +5z = 23

User Chris Meek
by
5.5k points

1 Answer

3 votes

Answer:

x = 5, y = -11 and z = 3

As a point it is (5, -11, 3)

You can check your work by plugging these values into each of the three equations and seeing if they satisfy each equation

Explanation:

Using Gaussian elimination


Write a matrix with the coefficients and solutions

\begin{bmatrix}2&-1&4& | &33\\ 1&2&-3& |&-26\\ -5&-3&5&|&23\end{bmatrix}

Reduce matrix to row echelon form:

\begin{pmatrix}1\:&\:\cdots \:&\:b\:\\ 0\:&\ddots \:&\:\vdots \\ 0\:&\:0\:&\:1\end{pmatrix}

Steps


\begin{pmatrix}2&-1&4&33\\ 1&2&-3&-26\\ -5&-3&5&23\end{pmatrix}

Swap matrix rows
R_1\:\leftrightarrow \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 1&2&-3&-26\\ 2&-1&4&33\end{pmatrix}

Cancel leading coefficient in row
R_2 by performing
R_2\:\leftarrow \:R_2+(1)/(5)\cdot \:R_1


=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 2&-1&4&33\end{pmatrix}

Cancel leading coefficient in row
R_3 by performing
R_3\:\leftarrow \:R_3+(2)/(5)\cdot \:R_1


=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 0&-(11)/(5)&6&(211)/(5)\end{pmatrix}

Swap matrix rows:
R_2\:\leftrightarrow \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&(7)/(5)&-2&-(107)/(5)\end{pmatrix}

Cancel leading coefficient in row
R_3 by performing
R_3\:\leftarrow \:R_3+(7)/(11)\cdot \:R_2


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&(20)/(11)&(60)/(11)\end{pmatrix}

Multiply matrix row by constant:
\:R_3\:\leftarrow (11)/(20)\cdot \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
\:R_2\: by performing
R_2\:\leftarrow \:R_2-6\cdot \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
R_1 by performing
R_1\:\leftarrow \:R_1-5\cdot \:R_3


=\begin{pmatrix}-5&-3&0&8\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}

Multiply matrix row by constant:
R_2\:\leftarrow \:-(5)/(11)\cdot \:R_2


=\begin{pmatrix}-5&-3&0&8\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
R_1 by performing
R_1\:\leftarrow \:R_1+3\cdot \:R_2


\begin{pmatrix}-5&0&0&-25\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

Multiply matrix row by constant :
R_1\:\leftarrow \:-(1)/(5)\cdot \:R_1


=\begin{pmatrix}1&0&0&5\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

This means x = 5, y = -11 and z = 3

Other row transformation sequences are possible but as you long as you can get a matrix to row echelon form you can determine what the solution set is

User Luke Joshua Park
by
5.5k points