Answer:
x = 5, y = -11 and z = 3
As a point it is (5, -11, 3)
You can check your work by plugging these values into each of the three equations and seeing if they satisfy each equation
Explanation:
Using Gaussian elimination
Write a matrix with the coefficients and solutions
![\begin{bmatrix}2&-1&4& | &33\\ 1&2&-3& |&-26\\ -5&-3&5&|&23\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t2tczk8i5lv6o1630tp6tshm859wjgvdp1.png)
Reduce matrix to row echelon form:
![\begin{pmatrix}1\:&\:\cdots \:&\:b\:\\ 0\:&\ddots \:&\:\vdots \\ 0\:&\:0\:&\:1\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lstd8tr73zmcw61o3hme7tak0piai97or4.png)
Steps
![\begin{pmatrix}2&-1&4&33\\ 1&2&-3&-26\\ -5&-3&5&23\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/woz4n1aepbrusygt3xsfkd51zx0hjiuue1.png)
Swap matrix rows
![R_1\:\leftrightarrow \:R_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/foyq0wud9kiwn2q30hirke2sh2r6enrs8t.png)
![=\begin{pmatrix}-5&-3&5&23\\ 1&2&-3&-26\\ 2&-1&4&33\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yq9luf67o2h1kjhtqstzorv7fd19xhqg54.png)
Cancel leading coefficient in row
by performing
![R_2\:\leftarrow \:R_2+(1)/(5)\cdot \:R_1](https://img.qammunity.org/2023/formulas/mathematics/high-school/18p3mtcdkv1w81b46m6oo4mvaxoicnbab1.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 2&-1&4&33\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/amng2zlwqifpnrfiq8n0vr89q41j25jt4n.png)
Cancel leading coefficient in row
by performing
![R_3\:\leftarrow \:R_3+(2)/(5)\cdot \:R_1](https://img.qammunity.org/2023/formulas/mathematics/high-school/e8e5hko63jwkfl3hdry0hzeyl8sm6fzhth.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 0&-(11)/(5)&6&(211)/(5)\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d8hvilb0vgtirfy5v0hfkdn510f3pjy772.png)
Swap matrix rows:
![R_2\:\leftrightarrow \:R_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/6kw6k8c5jwykyevonoxd8pj92341rrxzi7.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&(7)/(5)&-2&-(107)/(5)\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/le77f3clfc3w1lld1n609j67h77x306zio.png)
Cancel leading coefficient in row
by performing
![R_3\:\leftarrow \:R_3+(7)/(11)\cdot \:R_2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fzv37pjbpsqrbbacr6ujjvorhqxj61r827.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&(20)/(11)&(60)/(11)\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h758dabvvwentapo6zz3q4m801d7y9o54e.png)
Multiply matrix row by constant:
![\:R_3\:\leftarrow (11)/(20)\cdot \:R_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/k99l36mbv4e7ywczz9d81mb8pl4nwkr7ha.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vyycer2vj5s2wxzpk62zlis4qp7pxde177.png)
Cancel leading coefficient in row
by performing
![R_2\:\leftarrow \:R_2-6\cdot \:R_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/855rsvr8j19zxyrhof85ri96m1parr92wp.png)
![=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aufwwyynng890gd2fsple60sf7q6d6rqm7.png)
Cancel leading coefficient in row
by performing
![R_1\:\leftarrow \:R_1-5\cdot \:R_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/n2vsere5izvgnl3o5pewm28mqolnq56dls.png)
![=\begin{pmatrix}-5&-3&0&8\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bqrhkme468c55ifolkalg723avxb8gyq5t.png)
Multiply matrix row by constant:
![R_2\:\leftarrow \:-(5)/(11)\cdot \:R_2](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjx8w2ndu6bpyhhpta9df6l7yw1u5qy10v.png)
![=\begin{pmatrix}-5&-3&0&8\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/njkh42v4a4dwjrwghmdartffpze3qramxa.png)
Cancel leading coefficient in row
by performing
![R_1\:\leftarrow \:R_1+3\cdot \:R_2](https://img.qammunity.org/2023/formulas/mathematics/high-school/y9y4hpi9m5pc1h21n6fwpqu0yze4sdynk1.png)
![\begin{pmatrix}-5&0&0&-25\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6jhix4111q8bo5qfrht331jv76tino0u6r.png)
Multiply matrix row by constant :
![R_1\:\leftarrow \:-(1)/(5)\cdot \:R_1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qnfeby2unotbf018cdfua3oa7q6sixaniv.png)
![=\begin{pmatrix}1&0&0&5\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3bd3nzbfxsu1h511ocglcp75baka8xeivc.png)
This means x = 5, y = -11 and z = 3
Other row transformation sequences are possible but as you long as you can get a matrix to row echelon form you can determine what the solution set is