Answer:
THE ONLY STATEMENT THAT IS FALSE IS THE NUMBER 5.
Explanation:
Table of ordered data
number of value
data
1 62
2 88
3 89
4 90
5 92
6 95
7 96
8 98
9 100
10 100
Range of scores: 100 - 62 = 38
Oulier: 62 => Range without the outlier = 100 - 88 = 12
Interquartile range, IQR, = difference between third quartile and first quartile: IQR = Q3 - Q1
Quartlies of all the data:
1 62
2 88
3 89 --------------- first quartile, Q1 = 89
4 90
5 92
------------------------------------------ median, Q2 = (95 + 92) / 2 = 93.5
6 95
7 96
8 98 ---------------- third quartile, Q3 = 98
9 100
10 100
=> IQR = 98 - 89 = 9 : the interquartle range is 9
Quartlies without the outlier:
2 88
3 89
------------------------------------- first quartile, Q1 = (89 + 90) / 2 = 89.5
4 90
5 92
6 95 --------------- median, Q2 = 95
7 96
8 98
------------------------------------ third quartile, Q3 = (98 + 100) / 2 = 99
9 100
10 100
=> IQR = Q3 - Q1 = 99 - 89.5 = : the interquartle range without the outlier is 9.5
Therefore, the outlier impacts more the range than it impacts the IQR.
THE ONLY STATEMENT THAT IS FALSE IS THE NUMBER 5.