Answer:
10 and 12
Explanation:
let the consecutive even integers be n and n + 2 , then
n² - 64 = 3(n + 2) ← distribute parenthesis
n² - 64 = 3n + 6 ( subtract 3n + 6 from both sides )
n² - 3n - 70 = 0 ← in standard form
(n - 10)(n + 7) = 0 ← in factored form
Equate each factor to zero and solve for n
n - 10 = 0 ⇒ n = 10
n + 7 = 0 ⇒ n = - 7
Since n must be a positive even integer then n = 10 and n + 2 = 10 + 2 = 12
The 2 numbers are 10 and 12