Answer:
11. 17.7 units
12. 24.7 units
Explanation:
The perimeter of a two-dimensional shape is the distance all the way around the outside.
To find the perimeter of a polygon, sum the lengths of its sides.
Use the distance formula to find the length of each side.
![\boxed{\begin{minipage}{4.7 cm}\underline{Distance Formula}\\\\$d=√((x_2-x_1)^2+(y_2-y_1)^2)$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the two endpoints.\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/e2yusv34uqmgtjr0u5c2lagebn9cqnes4q.png)
Question 11
Given points:
- A = (-2, 1)
- B = (2, 5)
- C = (5, 1)
Use the distance formula to find the length of each side of ABC:
![\begin{aligned}AB & = √((x_B-x_A)^2+(y_B-y_A)^2)\\& = √((2-(-2))^2+(5-1)^2)\\& = √(4^2+4^2)\\& = √(16+16)\\& = √(32)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/vw7ekqhnye5tpo5046wrsb2zzlg1kw6mqu.png)
![\begin{aligned}BC & = √((x_C-x_B)^2+(y_C-y_B)^2)\\& = √((5-2)^2+(1-5)^2)\\& = √(3^2+(-4)^2)\\& = √(9+16)\\& = √(25)\\& = 5\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/rdipxlmxgiz20kv8yjwkaq727o31l1ovth.png)
![\begin{aligned}AC & = √((x_C-x_A)^2+(y_C-y_A)^2)\\& = √((5-(-2))^2+(1-1)^2)\\ & = √(7^2+0^2)\\ & = √(49)\\ & = 7\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/y3x3vk6z0npxc9emmlsszzq4dd1dwerqig.png)
To find the perimeter, sum the sides:
![\begin{aligned}\sf Perimeter & = AB+BC+AC\\& = √(32)+5+7\\& = 4√(2)+12\\& = 17.7\;\sf units\;(nearest\:tenth)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/bzn6l6fs7tari61kzls45ynimb9p7w86qq.png)
Question 12
Given points:
- A = (-3, 5)
- B = (1, 6)
- C = (3, -2)
- D = (-1, -3)
After plotting the given points, it is clear that the polygon is a parallelogram. As the opposite sides of a parallelogram are equal in length:
Therefore, we only need to find the length of two sides to calculate the perimeter.
Use the distance formula to find AB and BC:
![\begin{aligned}AB & = √((1-(-3))^2+(6-5)^2)\\& = √(4^2+1^2)\\& = √(16+1)\\& = √(17)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7rv4drtn89oypccx0hy914xjctsdo1u63v.png)
![\begin{aligned}BC & = √((3-1)^2+(-2-6)^2)\\& = √(2^2+(-8)^2)\\& = √(4+64)\\& = √(68)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/m7z23tdvgkra360gi5ntwnlnfczf2j1a8u.png)
Therefore, the perimeter of ABCD is:
![\begin{aligned}\sf Perimeter & = 2(AB+BC)\\& = 2(√(17)+√(68))\\& = 6√(17)\\& =24.7\;\sf units\;(nearest\:tenth)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/84vntqi0sde1yrnxriv78x4ntgsk46kv2i.png)