219k views
5 votes
Given f(x)=x-4 and g(x)=x²-3x+ | algebraically determine all values of x such that f(g(x)) = g(f(x))

1 Answer

3 votes

Explanation:

When we plug in the values we get


f(g(x)) = ({x}^(2) - 3x + 1) - 4 \\ = {x}^(2) - 3x - 3


g(f(x)) = {(x - 4)}^(2) - 3(x - 4) + 1


{x}^(2) - 3x - 3 = {(x - 4)(x - 4)} - 3x + 12 + 1 \\ {x }^(2) - 3x - 3 = {x}^(2) - 8x + 16 - 3x + 13 \\ \\ {x}^(2) - {x}^(2) - 3x + 8x + 3x - 3 - 16 - 13 = 0 \\ 8x - 32 = 0 \\ 8x = 32 \\ (8x)/(8) = (32)/(8) \\ x = 4

User Divz
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories