Answer:
T'''(2, 6)
Explanation:
The transformations used in this problem are ...
(x, y) ⇒ (-x, -y) . . . . . rotation 180° about the origin
(x, y) ⇒ (x +h, y +k) . . . . translation h right and k up
(x, y) ⇒ (y, x) . . . . . . reflection over the line y=x
__
Applying these transformations to point T(-5, -4), we have ...
1. T(-5, -4) ⇒ T'(5, 4)
2. (h, k) = (1, -2), so we get ...
T'(5, 4) ⇒ T"(5 +1, 4 -2) = T"(6, 2)
3. T"(6, 2) ⇒ T'''(2, 6) . . . . straightforward application of the separate transformations