Answer:
3.9 m³
Explanation:
To find the volume of a right prism, multiply its base area by its height.
For the given shape:
- Base = trapezoid ABCD
- Height = 1.5 m
Area of a trapezoid
![\boxed{A = (1)/(2)(a+b)h}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ryeyvwcawmxk8lua13p3ozhj0uvahdurok.png)
Where a and b are the bases and h is the height.
From inspection of the given diagram:
- a = BC = 1.7 m
- b = AD = 2.3 m
- h = CD = 1.3 m
Substitute the given values into the formula to find the area of the trapezoid base (ABCD):
![\begin{aligned}A & = (1)/(2)(a+b)h\\\implies ABCD & = (1)/(2)(BC+AD)CD\\ &=(1)/(2)(1.7+2.3)(1.3)\\&=(1)/(2)(4)(1.3)\\&=(2)(1.3)\\&=2.6\; \sf m^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sajjo7cmkua3ld4phztgs8q5qwn940xwxe.png)
Therefore:
![\begin{aligned}\textsf{Volume of prism} & = \textsf{Area of base} * \sf height\\\implies V & = ABCD * 1.5\\V & = 2.6 * 1.5\\V & = 3.9\;\sf m^3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8lnilqxan49arrjed11m85hrzlvsfd5343.png)