375,015 views
5 votes
5 votes
Solve: (i) 3/x-1 + 1/x-3 = 4/x-2.​

Solve: (i) 3/x-1 + 1/x-3 = 4/x-2.​-example-1
User Displee
by
2.6k points

1 Answer

17 votes
17 votes

Answer:


\longrightarrow\sf{ (3)/(x - 1) + (1)/(x - 3) = (4)/(x - 2)}


\\ \longrightarrow\sf{ (3(x - 3) + 1(x - 1))/((x - 1) (x - 3)) = (4)/(x - 2)}


\\ \longrightarrow\sf{ (3x - 9 + x - 1)/(x(x - 3) - 1(x - 3)) = (4)/(x - 2)}


\\ \longrightarrow\sf{ \frac{3x + x - 9 - 1}{{x}^(2) - 3x - x + 3} = (4)/(x - 2)}


\\ \longrightarrow\sf{ \frac{4x - 10}{{x}^(2) - 4x + 3} = (4)/(x - 2)}


\\ \longrightarrow\sf{ (4x - 10) (x - 2) = 4({x}^(2) - 4x + 3)}


\\ \longrightarrow\sf{4x ( x -2 ) - 10 (x - 2) = 4{x}^(2) - 16x + 12}


\\ \longrightarrow\sf{4{x}^(2) - 8x - 10x + 20 = 4{x}^(2) - 16x + 12}

4x² get cancelled on both sides .


\\ \longrightarrow\sf{ - 18x + 20 = - 16x + 12}


\\ \longrightarrow\sf{ - 18x + 16x = 12 - 20}


\\ \longrightarrow\sf{ -2x = - 8}


\\ \longrightarrow\sf{ x = (- 8)/(-2)}


\\ \longrightarrow\sf{ x = 4}

User Nick Allen
by
3.2k points