348,288 views
5 votes
5 votes
Bella has a stack of 41 bills (ones, fives, and tens) in an envelope. She has 3 less tens than fives and the quantity of ones doubles the number of fives. Write and solve an equation to determine how many of each bill type she has

User Colinross
by
2.7k points

1 Answer

9 votes
9 votes

Answer:

x+(x-3)+(2*x)=41

Explanation:

We know that the other two bills are based of of a constant value for fives. Therefore, the fives can be x. There are 3 less tens than fives, so the number of tens equals x-3. We double the number of fives to get the number of ones, so the number of ones equals 2 times x. When we add all 3 of those together, we get our total number of 41. If you want to solve, you have to solve for x, then you can plug it back into the formula. I hope this helps!

User Nidal
by
2.8k points