Answer:
860.7 m³ (nearest tenth).
Explanation:
The given composite figure appears to be a rectangular prism with a cylinder omitted.
Volume of a rectangular prism
![V=w\:h\:l](https://img.qammunity.org/2023/formulas/mathematics/high-school/4d4ip7m4gpbei4axxtz7xt9tr7tfsgc9hi.png)
where:
- w = width
- h = height
- l = length
Volume of a cylinder
![V=\pi r^2 h](https://img.qammunity.org/2023/formulas/mathematics/college/j1kyqfnbb97k2up43ao1z64foeybyhide1.png)
where:
Therefore, the formula for the volume of the composite figure is:
![\large\boxed{V=whl- \pi r^2h}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9jibqgrsk93scjwhw7554ag4skuf43lrz1.png)
From inspection of the given diagram:
- w = 10 m
- l = 10 m
- h = 12 m
- r = 3 m
Substitute these values into the formula to find the volume of the composite figure:
![\begin{aligned}\implies V&=whl - \pi r^2h\\& = 10 \cdot 12 \cdot 10- \pi \cdot 3^2 \cdot 12\\& = 120 \cdot 10- \pi \cdot 9 \cdot 12\\& = 1200- 108 \pi\\& = 1200 - 339.292006...\\& = 860.7\; \sf m^3\;(nearest\:tenth)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xnkaiz8yh935e143eotk6djmugi4udfxbl.png)
Therefore, the volume of the composite figure is 860.7 m³ (nearest tenth).