Answer:
![\textsf{d)} \quad (5)/(6), \quad (25)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/6fcxy614i0trwlc9yusytdfi9vrh4pxct9.png)
Explanation:
Given:
![12 \cos \left((2 \pi)/(5)x\right)+10=16, \quad \textsf{when}\; \left((2 \pi)/(5)x\right)\; \textsf{is in radians}.](https://img.qammunity.org/2023/formulas/mathematics/college/av4eqddr831fk20it4wd92njw5x4s5o6e6.png)
Subtract 10 from both sides of the given equation:
![\implies 12 \cos \left((2 \pi)/(5)x\right)=6](https://img.qammunity.org/2023/formulas/mathematics/college/87fp3x58swcp106cqo6cg0zr30f4ienzea.png)
Divide both sides of the equation by 12:
![\implies \cos \left((2 \pi)/(5)x\right)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/qnbsi4dfvvarz35cdyf9x86ren6nzejk20.png)
Take the inverse of cosine of both sides:
![\implies (2 \pi)/(5)x = \cos^(-1)\left((1)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/g8qud7n782gfmkv1vl1e7rj6ku07d4b7dz.png)
![\implies (2 \pi)/(5)x =(\pi)/(3)+2 \pi n, (5 \pi)/(3)+2 \pi n](https://img.qammunity.org/2023/formulas/mathematics/college/jvnwbazjn0lpa4q01oe3u4pfctg2chhs9t.png)
Multiply both sides by 5:
![\implies 2 \pi x=(5 \pi)/(3)+10 \pi n, (25 \pi)/(3)+10 \pi n](https://img.qammunity.org/2023/formulas/mathematics/college/dzqwx5obaaybi59lg8jvo5zn7oluu8in5g.png)
Divide both sides by 2π:
![\implies x=(5 \pi)/(6 \pi)+(10 \pi)/(2 \pi)n, (25 \pi)/(6 \pi)+(10 \pi)/(2 \pi)](https://img.qammunity.org/2023/formulas/mathematics/college/yqe1j1rwydazax092yo6xrri8d4ojjq1ah.png)
Simplify:
![\implies x=(5)/(6)+5n, (25)/(6)+5n](https://img.qammunity.org/2023/formulas/mathematics/college/uu6ivd2cpfcr5xysv2vx941rekyyez7utk.png)
The two smallest possible solutions for x are when n = 0:
![\implies x=(5)/(6), \quad x=(25)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/hsckny131gnn5xmrgth8m7k3smnaamvnem.png)