let x be the capital invested in the 9% account
let y be the capital invested in the 8% account
let j be the interest earned from the 9% account
let k be the interest earned from the 8% account
![j = xi_(1)n \: \: \: (n = 1 \: year)\\ j = x( (9)/(100))(1) = 0.09x](https://img.qammunity.org/2023/formulas/mathematics/college/i8t20okezls7z1pfb3nzsans21y8lzpjz5.png)
![k =yi_(2)n \: \: \: \: (n = 1 \: year) \\ k = y( (8)/(100) )(1) = 0.08y](https://img.qammunity.org/2023/formulas/mathematics/college/7akkyxblo18f5veirrkvphf2fat0igzs2x.png)
But the total interest made is 2100 $, hence:
![\: \: \: \: \: \: \: j + k = 2100 \\ 0.09x + 0.08y = 2100](https://img.qammunity.org/2023/formulas/mathematics/college/47bu0bqnwj1l5mpd511f5l52havf6t694g.png)
And the total capital invested is 25000 $
![x + y = 25000](https://img.qammunity.org/2023/formulas/mathematics/college/f7z5j7ej5dnb6mhyj3l79xi8hil3l3se5f.png)
System of 2 equations and two unknowns:
![0.09x + 0.08y = 2100 \\ x + y = 25000 \\ \\ \: \: \: \: (x,y)=(10000,15000)](https://img.qammunity.org/2023/formulas/mathematics/college/n3eus4q1jw5ytyhd6zuilpomuluzr19dd1.png)