43.0k views
2 votes
Find the perimeter of triangle ABC rounded to the nearest whole number. A (-1,4) B (2,2) and C (-2,-1)

User Siniradam
by
8.2k points

1 Answer

7 votes


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{-1}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{2}~,~\stackrel{y_2}{2}) ~\hfill AB=√((~~ 2- (-1)~~)^2 + (~~ 2- 4~~)^2) \\\\\\ ~\hfill AB=√(( 3)^2 + ( -2)^2)\implies \boxed{AB=√(13)} \\\\\\ B(\stackrel{x_1}{2}~,~\stackrel{y_1}{2})\qquad C(\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1}) ~\hfill BC=√((~~ -2- 2~~)^2 + (~~ -1- 2~~)^2)


~\hfill BC=√(( -4)^2 + ( -3)^2)\implies \boxed{BC=5} \\\\\\ C(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad A(\stackrel{x_2}{-1}~,~\stackrel{y_2}{4}) ~\hfill CA=√((~~ -1- (-2)~~)^2 + (~~ 4- (-1)~~)^2) \\\\\\ ~\hfill CA=√(( 1)^2 + (5)^2)\implies \boxed{CA=√(26)} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{Perimeter}{√(13)~~ + ~~5~~ + ~~√(26) ~~ \approx ~~ \text{\LARGE 14}}

User Steboc
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories